| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ellim | Structured version Visualization version GIF version | ||
| Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| 2ellim | ⊢ (Lim 𝐴 → 2o ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlim0 6392 | . . . 4 ⊢ ¬ Lim ∅ | |
| 2 | limeq 6344 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
| 3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
| 4 | 3 | necon2ai 2954 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
| 5 | nlim1 8453 | . . . 4 ⊢ ¬ Lim 1o | |
| 6 | limeq 6344 | . . . 4 ⊢ (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o)) | |
| 7 | 5, 6 | mtbiri 327 | . . 3 ⊢ (𝐴 = 1o → ¬ Lim 𝐴) |
| 8 | 7 | necon2ai 2954 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 1o) |
| 9 | nlim2 8454 | . . . 4 ⊢ ¬ Lim 2o | |
| 10 | limeq 6344 | . . . 4 ⊢ (𝐴 = 2o → (Lim 𝐴 ↔ Lim 2o)) | |
| 11 | 9, 10 | mtbiri 327 | . . 3 ⊢ (𝐴 = 2o → ¬ Lim 𝐴) |
| 12 | 11 | necon2ai 2954 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 2o) |
| 13 | limord 6393 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 14 | ord2eln012 8461 | . . 3 ⊢ (Ord 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (Lim 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) |
| 16 | 4, 8, 12, 15 | mpbir3and 1343 | 1 ⊢ (Lim 𝐴 → 2o ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 Ord word 6331 Lim wlim 6333 1oc1o 8427 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-1o 8434 df-2o 8435 |
| This theorem is referenced by: 2onn 8606 |
| Copyright terms: Public domain | W3C validator |