MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ellim Structured version   Visualization version   GIF version

Theorem 2ellim 8329
Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
2ellim (Lim 𝐴 → 2o𝐴)

Proof of Theorem 2ellim
StepHypRef Expression
1 nlim0 6324 . . . 4 ¬ Lim ∅
2 limeq 6278 . . . 4 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
31, 2mtbiri 327 . . 3 (𝐴 = ∅ → ¬ Lim 𝐴)
43necon2ai 2973 . 2 (Lim 𝐴𝐴 ≠ ∅)
5 nlim1 8319 . . . 4 ¬ Lim 1o
6 limeq 6278 . . . 4 (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o))
75, 6mtbiri 327 . . 3 (𝐴 = 1o → ¬ Lim 𝐴)
87necon2ai 2973 . 2 (Lim 𝐴𝐴 ≠ 1o)
9 nlim2 8320 . . . 4 ¬ Lim 2o
10 limeq 6278 . . . 4 (𝐴 = 2o → (Lim 𝐴 ↔ Lim 2o))
119, 10mtbiri 327 . . 3 (𝐴 = 2o → ¬ Lim 𝐴)
1211necon2ai 2973 . 2 (Lim 𝐴𝐴 ≠ 2o)
13 limord 6325 . . 3 (Lim 𝐴 → Ord 𝐴)
14 ord2eln012 8327 . . 3 (Ord 𝐴 → (2o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o)))
1513, 14syl 17 . 2 (Lim 𝐴 → (2o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o)))
164, 8, 12, 15mpbir3and 1341 1 (Lim 𝐴 → 2o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wne 2943  c0 4256  Ord word 6265  Lim wlim 6267  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-1o 8297  df-2o 8298
This theorem is referenced by:  2onn  8472
  Copyright terms: Public domain W3C validator