MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ellim Structured version   Visualization version   GIF version

Theorem 2ellim 8536
Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
2ellim (Lim 𝐴 → 2o𝐴)

Proof of Theorem 2ellim
StepHypRef Expression
1 nlim0 6445 . . . 4 ¬ Lim ∅
2 limeq 6398 . . . 4 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
31, 2mtbiri 327 . . 3 (𝐴 = ∅ → ¬ Lim 𝐴)
43necon2ai 2968 . 2 (Lim 𝐴𝐴 ≠ ∅)
5 nlim1 8526 . . . 4 ¬ Lim 1o
6 limeq 6398 . . . 4 (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o))
75, 6mtbiri 327 . . 3 (𝐴 = 1o → ¬ Lim 𝐴)
87necon2ai 2968 . 2 (Lim 𝐴𝐴 ≠ 1o)
9 nlim2 8527 . . . 4 ¬ Lim 2o
10 limeq 6398 . . . 4 (𝐴 = 2o → (Lim 𝐴 ↔ Lim 2o))
119, 10mtbiri 327 . . 3 (𝐴 = 2o → ¬ Lim 𝐴)
1211necon2ai 2968 . 2 (Lim 𝐴𝐴 ≠ 2o)
13 limord 6446 . . 3 (Lim 𝐴 → Ord 𝐴)
14 ord2eln012 8534 . . 3 (Ord 𝐴 → (2o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o)))
1513, 14syl 17 . 2 (Lim 𝐴 → (2o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o)))
164, 8, 12, 15mpbir3and 1341 1 (Lim 𝐴 → 2o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wcel 2106  wne 2938  c0 4339  Ord word 6385  Lim wlim 6387  1oc1o 8498  2oc2o 8499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-1o 8505  df-2o 8506
This theorem is referenced by:  2onn  8679
  Copyright terms: Public domain W3C validator