![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ellim | Structured version Visualization version GIF version |
Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
2ellim | ⊢ (Lim 𝐴 → 2o ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 6423 | . . . 4 ⊢ ¬ Lim ∅ | |
2 | limeq 6376 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
3 | 1, 2 | mtbiri 326 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
4 | 3 | necon2ai 2970 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
5 | nlim1 8488 | . . . 4 ⊢ ¬ Lim 1o | |
6 | limeq 6376 | . . . 4 ⊢ (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o)) | |
7 | 5, 6 | mtbiri 326 | . . 3 ⊢ (𝐴 = 1o → ¬ Lim 𝐴) |
8 | 7 | necon2ai 2970 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 1o) |
9 | nlim2 8489 | . . . 4 ⊢ ¬ Lim 2o | |
10 | limeq 6376 | . . . 4 ⊢ (𝐴 = 2o → (Lim 𝐴 ↔ Lim 2o)) | |
11 | 9, 10 | mtbiri 326 | . . 3 ⊢ (𝐴 = 2o → ¬ Lim 𝐴) |
12 | 11 | necon2ai 2970 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 2o) |
13 | limord 6424 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
14 | ord2eln012 8496 | . . 3 ⊢ (Ord 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (Lim 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) |
16 | 4, 8, 12, 15 | mpbir3and 1342 | 1 ⊢ (Lim 𝐴 → 2o ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4322 Ord word 6363 Lim wlim 6365 1oc1o 8458 2oc2o 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-1o 8465 df-2o 8466 |
This theorem is referenced by: 2onn 8640 |
Copyright terms: Public domain | W3C validator |