![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ellim | Structured version Visualization version GIF version |
Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
2ellim | ⊢ (Lim 𝐴 → 2o ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 6454 | . . . 4 ⊢ ¬ Lim ∅ | |
2 | limeq 6407 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
4 | 3 | necon2ai 2976 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
5 | nlim1 8545 | . . . 4 ⊢ ¬ Lim 1o | |
6 | limeq 6407 | . . . 4 ⊢ (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o)) | |
7 | 5, 6 | mtbiri 327 | . . 3 ⊢ (𝐴 = 1o → ¬ Lim 𝐴) |
8 | 7 | necon2ai 2976 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 1o) |
9 | nlim2 8546 | . . . 4 ⊢ ¬ Lim 2o | |
10 | limeq 6407 | . . . 4 ⊢ (𝐴 = 2o → (Lim 𝐴 ↔ Lim 2o)) | |
11 | 9, 10 | mtbiri 327 | . . 3 ⊢ (𝐴 = 2o → ¬ Lim 𝐴) |
12 | 11 | necon2ai 2976 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 2o) |
13 | limord 6455 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
14 | ord2eln012 8553 | . . 3 ⊢ (Ord 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (Lim 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) |
16 | 4, 8, 12, 15 | mpbir3and 1342 | 1 ⊢ (Lim 𝐴 → 2o ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 Ord word 6394 Lim wlim 6396 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: 2onn 8698 |
Copyright terms: Public domain | W3C validator |