MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ellim Structured version   Visualization version   GIF version

Theorem 2ellim 8420
Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
2ellim (Lim 𝐴 → 2o𝐴)

Proof of Theorem 2ellim
StepHypRef Expression
1 nlim0 6371 . . . 4 ¬ Lim ∅
2 limeq 6323 . . . 4 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
31, 2mtbiri 327 . . 3 (𝐴 = ∅ → ¬ Lim 𝐴)
43necon2ai 2958 . 2 (Lim 𝐴𝐴 ≠ ∅)
5 nlim1 8410 . . . 4 ¬ Lim 1o
6 limeq 6323 . . . 4 (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o))
75, 6mtbiri 327 . . 3 (𝐴 = 1o → ¬ Lim 𝐴)
87necon2ai 2958 . 2 (Lim 𝐴𝐴 ≠ 1o)
9 nlim2 8411 . . . 4 ¬ Lim 2o
10 limeq 6323 . . . 4 (𝐴 = 2o → (Lim 𝐴 ↔ Lim 2o))
119, 10mtbiri 327 . . 3 (𝐴 = 2o → ¬ Lim 𝐴)
1211necon2ai 2958 . 2 (Lim 𝐴𝐴 ≠ 2o)
13 limord 6372 . . 3 (Lim 𝐴 → Ord 𝐴)
14 ord2eln012 8418 . . 3 (Ord 𝐴 → (2o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o)))
1513, 14syl 17 . 2 (Lim 𝐴 → (2o𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o𝐴 ≠ 2o)))
164, 8, 12, 15mpbir3and 1343 1 (Lim 𝐴 → 2o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113  wne 2929  c0 4282  Ord word 6310  Lim wlim 6312  1oc1o 8384  2oc2o 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-1o 8391  df-2o 8392
This theorem is referenced by:  2onn  8563
  Copyright terms: Public domain W3C validator