![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ellim | Structured version Visualization version GIF version |
Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
2ellim | ⊢ (Lim 𝐴 → 2o ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 6445 | . . . 4 ⊢ ¬ Lim ∅ | |
2 | limeq 6398 | . . . 4 ⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅)) | |
3 | 1, 2 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ Lim 𝐴) |
4 | 3 | necon2ai 2968 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ ∅) |
5 | nlim1 8526 | . . . 4 ⊢ ¬ Lim 1o | |
6 | limeq 6398 | . . . 4 ⊢ (𝐴 = 1o → (Lim 𝐴 ↔ Lim 1o)) | |
7 | 5, 6 | mtbiri 327 | . . 3 ⊢ (𝐴 = 1o → ¬ Lim 𝐴) |
8 | 7 | necon2ai 2968 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 1o) |
9 | nlim2 8527 | . . . 4 ⊢ ¬ Lim 2o | |
10 | limeq 6398 | . . . 4 ⊢ (𝐴 = 2o → (Lim 𝐴 ↔ Lim 2o)) | |
11 | 9, 10 | mtbiri 327 | . . 3 ⊢ (𝐴 = 2o → ¬ Lim 𝐴) |
12 | 11 | necon2ai 2968 | . 2 ⊢ (Lim 𝐴 → 𝐴 ≠ 2o) |
13 | limord 6446 | . . 3 ⊢ (Lim 𝐴 → Ord 𝐴) | |
14 | ord2eln012 8534 | . . 3 ⊢ (Ord 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (Lim 𝐴 → (2o ∈ 𝐴 ↔ (𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o))) |
16 | 4, 8, 12, 15 | mpbir3and 1341 | 1 ⊢ (Lim 𝐴 → 2o ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 Ord word 6385 Lim wlim 6387 1oc1o 8498 2oc2o 8499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-1o 8505 df-2o 8506 |
This theorem is referenced by: 2onn 8679 |
Copyright terms: Public domain | W3C validator |