MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscn Structured version   Visualization version   GIF version

Theorem nlmvscn 24608
Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg 24611 and nlmtlm 24615. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.sf · = ( ·sf𝑊)
nlmvscn.j 𝐽 = (TopOpen‘𝑊)
nlmvscn.kf 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
nlmvscn (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))

Proof of Theorem nlmvscn
Dummy variables 𝑟 𝑥 𝑦 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmlmod 24599 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2 eqid 2729 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
3 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 eqid 2729 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
5 nlmvscn.sf . . . . 5 · = ( ·sf𝑊)
62, 3, 4, 5lmodscaf 20822 . . . 4 (𝑊 ∈ LMod → · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊))
71, 6syl 17 . . 3 (𝑊 ∈ NrmMod → · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊))
8 eqid 2729 . . . . . . 7 (dist‘𝑊) = (dist‘𝑊)
9 eqid 2729 . . . . . . 7 (dist‘𝐹) = (dist‘𝐹)
10 eqid 2729 . . . . . . 7 (norm‘𝑊) = (norm‘𝑊)
11 eqid 2729 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
12 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1))
14 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1))))
15 simpll 766 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ NrmMod)
16 simpr 484 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
17 simplrl 776 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝐹))
18 simplrr 777 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊))
193, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18nlmvscnlem1 24607 . . . . . 6 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
2019ralrimiva 3125 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
21 simplrl 776 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐹))
22 simprl 770 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝐹))
2321, 22ovresd 7536 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) = (𝑥(dist‘𝐹)𝑧))
2423breq1d 5112 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝐹)𝑧) < 𝑠))
25 simplrr 777 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
26 simprr 772 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊))
2725, 26ovresd 7536 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤))
2827breq1d 5112 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠))
2924, 28anbi12d 632 . . . . . . . . 9 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠)))
302, 3, 4, 5, 12scafval 20819 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 · 𝑦) = (𝑥( ·𝑠𝑊)𝑦))
3130ad2antlr 727 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 · 𝑦) = (𝑥( ·𝑠𝑊)𝑦))
322, 3, 4, 5, 12scafval 20819 . . . . . . . . . . . . 13 ((𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 · 𝑤) = (𝑧( ·𝑠𝑊)𝑤))
3332adantl 481 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 · 𝑤) = (𝑧( ·𝑠𝑊)𝑤))
3431, 33oveq12d 7387 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠𝑊)𝑤)))
351ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
362, 3, 12, 4lmodvscl 20816 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
3735, 21, 25, 36syl3anc 1373 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
382, 3, 12, 4lmodvscl 20816 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊))
3935, 22, 26, 38syl3anc 1373 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊))
4037, 39ovresd 7536 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠𝑊)𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)))
4134, 40eqtrd 2764 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)))
4241breq1d 5112 . . . . . . . . 9 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟 ↔ ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
4329, 42imbi12d 344 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
44432ralbidva 3197 . . . . . . 7 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4544rexbidv 3157 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4645ralbidv 3156 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4720, 46mpbird 257 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))
4847ralrimivva 3178 . . 3 (𝑊 ∈ NrmMod → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))
493nlmngp2 24601 . . . . . 6 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
50 ngpms 24521 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
5149, 50syl 17 . . . . 5 (𝑊 ∈ NrmMod → 𝐹 ∈ MetSp)
52 msxms 24375 . . . . 5 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
53 eqid 2729 . . . . . 6 ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) = ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))
544, 53xmsxmet 24377 . . . . 5 (𝐹 ∈ ∞MetSp → ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)))
5551, 52, 543syl 18 . . . 4 (𝑊 ∈ NrmMod → ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)))
56 nlmngp 24598 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
57 ngpms 24521 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
5856, 57syl 17 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ MetSp)
59 msxms 24375 . . . . 5 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
60 eqid 2729 . . . . . 6 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
612, 60xmsxmet 24377 . . . . 5 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
6258, 59, 613syl 18 . . . 4 (𝑊 ∈ NrmMod → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
63 eqid 2729 . . . . 5 (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))))
64 eqid 2729 . . . . 5 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
6563, 64, 64txmetcn 24469 . . . 4 ((((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊))) → ( · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))))
6655, 62, 62, 65syl3anc 1373 . . 3 (𝑊 ∈ NrmMod → ( · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))))
677, 48, 66mpbir2and 713 . 2 (𝑊 ∈ NrmMod → · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
68 nlmvscn.kf . . . . . 6 𝐾 = (TopOpen‘𝐹)
6968, 4, 53mstopn 24373 . . . . 5 (𝐹 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))))
7051, 69syl 17 . . . 4 (𝑊 ∈ NrmMod → 𝐾 = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))))
71 nlmvscn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
7271, 2, 60mstopn 24373 . . . . 5 (𝑊 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7358, 72syl 17 . . . 4 (𝑊 ∈ NrmMod → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7470, 73oveq12d 7387 . . 3 (𝑊 ∈ NrmMod → (𝐾 ×t 𝐽) = ((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7574, 73oveq12d 7387 . 2 (𝑊 ∈ NrmMod → ((𝐾 ×t 𝐽) Cn 𝐽) = (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7667, 75eleqtrrd 2831 1 (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102   × cxp 5629  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047   < clt 11184   / cdiv 11811  2c2 12217  +crp 12927  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  distcds 17205  TopOpenctopn 17360  LModclmod 20798   ·sf cscaf 20799  ∞Metcxmet 21281  MetOpencmopn 21286   Cn ccn 23144   ×t ctx 23480  ∞MetSpcxms 24238  MetSpcms 24239  normcnm 24497  NrmGrpcngp 24498  NrmModcnlm 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-lmod 20800  df-scaf 20801  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cn 23147  df-cnp 23148  df-tx 23482  df-hmeo 23675  df-xms 24241  df-ms 24242  df-tms 24243  df-nm 24503  df-ngp 24504  df-nrg 24506  df-nlm 24507
This theorem is referenced by:  nrgtrg  24611  nlmtlm  24615
  Copyright terms: Public domain W3C validator