MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscn Structured version   Visualization version   GIF version

Theorem nlmvscn 24573
Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg 24576 and nlmtlm 24580. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.sf · = ( ·sf𝑊)
nlmvscn.j 𝐽 = (TopOpen‘𝑊)
nlmvscn.kf 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
nlmvscn (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))

Proof of Theorem nlmvscn
Dummy variables 𝑟 𝑥 𝑦 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmlmod 24564 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2 eqid 2729 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
3 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 eqid 2729 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
5 nlmvscn.sf . . . . 5 · = ( ·sf𝑊)
62, 3, 4, 5lmodscaf 20787 . . . 4 (𝑊 ∈ LMod → · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊))
71, 6syl 17 . . 3 (𝑊 ∈ NrmMod → · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊))
8 eqid 2729 . . . . . . 7 (dist‘𝑊) = (dist‘𝑊)
9 eqid 2729 . . . . . . 7 (dist‘𝐹) = (dist‘𝐹)
10 eqid 2729 . . . . . . 7 (norm‘𝑊) = (norm‘𝑊)
11 eqid 2729 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
12 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1))
14 eqid 2729 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1))))
15 simpll 766 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ NrmMod)
16 simpr 484 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
17 simplrl 776 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝐹))
18 simplrr 777 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊))
193, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18nlmvscnlem1 24572 . . . . . 6 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
2019ralrimiva 3121 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
21 simplrl 776 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐹))
22 simprl 770 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝐹))
2321, 22ovresd 7516 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) = (𝑥(dist‘𝐹)𝑧))
2423breq1d 5102 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝐹)𝑧) < 𝑠))
25 simplrr 777 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
26 simprr 772 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊))
2725, 26ovresd 7516 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤))
2827breq1d 5102 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠))
2924, 28anbi12d 632 . . . . . . . . 9 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠)))
302, 3, 4, 5, 12scafval 20784 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 · 𝑦) = (𝑥( ·𝑠𝑊)𝑦))
3130ad2antlr 727 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 · 𝑦) = (𝑥( ·𝑠𝑊)𝑦))
322, 3, 4, 5, 12scafval 20784 . . . . . . . . . . . . 13 ((𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 · 𝑤) = (𝑧( ·𝑠𝑊)𝑤))
3332adantl 481 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 · 𝑤) = (𝑧( ·𝑠𝑊)𝑤))
3431, 33oveq12d 7367 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠𝑊)𝑤)))
351ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
362, 3, 12, 4lmodvscl 20781 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
3735, 21, 25, 36syl3anc 1373 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
382, 3, 12, 4lmodvscl 20781 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊))
3935, 22, 26, 38syl3anc 1373 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊))
4037, 39ovresd 7516 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠𝑊)𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)))
4134, 40eqtrd 2764 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)))
4241breq1d 5102 . . . . . . . . 9 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟 ↔ ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
4329, 42imbi12d 344 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
44432ralbidva 3191 . . . . . . 7 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4544rexbidv 3153 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4645ralbidv 3152 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4720, 46mpbird 257 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))
4847ralrimivva 3172 . . 3 (𝑊 ∈ NrmMod → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))
493nlmngp2 24566 . . . . . 6 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
50 ngpms 24486 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
5149, 50syl 17 . . . . 5 (𝑊 ∈ NrmMod → 𝐹 ∈ MetSp)
52 msxms 24340 . . . . 5 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
53 eqid 2729 . . . . . 6 ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) = ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))
544, 53xmsxmet 24342 . . . . 5 (𝐹 ∈ ∞MetSp → ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)))
5551, 52, 543syl 18 . . . 4 (𝑊 ∈ NrmMod → ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)))
56 nlmngp 24563 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
57 ngpms 24486 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
5856, 57syl 17 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ MetSp)
59 msxms 24340 . . . . 5 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
60 eqid 2729 . . . . . 6 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
612, 60xmsxmet 24342 . . . . 5 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
6258, 59, 613syl 18 . . . 4 (𝑊 ∈ NrmMod → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
63 eqid 2729 . . . . 5 (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))))
64 eqid 2729 . . . . 5 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
6563, 64, 64txmetcn 24434 . . . 4 ((((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊))) → ( · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))))
6655, 62, 62, 65syl3anc 1373 . . 3 (𝑊 ∈ NrmMod → ( · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))))
677, 48, 66mpbir2and 713 . 2 (𝑊 ∈ NrmMod → · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
68 nlmvscn.kf . . . . . 6 𝐾 = (TopOpen‘𝐹)
6968, 4, 53mstopn 24338 . . . . 5 (𝐹 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))))
7051, 69syl 17 . . . 4 (𝑊 ∈ NrmMod → 𝐾 = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))))
71 nlmvscn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
7271, 2, 60mstopn 24338 . . . . 5 (𝑊 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7358, 72syl 17 . . . 4 (𝑊 ∈ NrmMod → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7470, 73oveq12d 7367 . . 3 (𝑊 ∈ NrmMod → (𝐾 ×t 𝐽) = ((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7574, 73oveq12d 7367 . 2 (𝑊 ∈ NrmMod → ((𝐾 ×t 𝐽) Cn 𝐽) = (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7667, 75eleqtrrd 2831 1 (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092   × cxp 5617  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  1c1 11010   + caddc 11012   < clt 11149   / cdiv 11777  2c2 12183  +crp 12893  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  distcds 17170  TopOpenctopn 17325  LModclmod 20763   ·sf cscaf 20764  ∞Metcxmet 21246  MetOpencmopn 21251   Cn ccn 23109   ×t ctx 23445  ∞MetSpcxms 24203  MetSpcms 24204  normcnm 24462  NrmGrpcngp 24463  NrmModcnlm 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20765  df-scaf 20766  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472
This theorem is referenced by:  nrgtrg  24576  nlmtlm  24580
  Copyright terms: Public domain W3C validator