MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscn Structured version   Visualization version   GIF version

Theorem nlmvscn 24729
Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg 24732 and nlmtlm 24736. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.sf · = ( ·sf𝑊)
nlmvscn.j 𝐽 = (TopOpen‘𝑊)
nlmvscn.kf 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
nlmvscn (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))

Proof of Theorem nlmvscn
Dummy variables 𝑟 𝑥 𝑦 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmlmod 24720 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2 eqid 2740 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
3 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 eqid 2740 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
5 nlmvscn.sf . . . . 5 · = ( ·sf𝑊)
62, 3, 4, 5lmodscaf 20904 . . . 4 (𝑊 ∈ LMod → · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊))
71, 6syl 17 . . 3 (𝑊 ∈ NrmMod → · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊))
8 eqid 2740 . . . . . . 7 (dist‘𝑊) = (dist‘𝑊)
9 eqid 2740 . . . . . . 7 (dist‘𝐹) = (dist‘𝐹)
10 eqid 2740 . . . . . . 7 (norm‘𝑊) = (norm‘𝑊)
11 eqid 2740 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
12 eqid 2740 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 eqid 2740 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1))
14 eqid 2740 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1))))
15 simpll 766 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ NrmMod)
16 simpr 484 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
17 simplrl 776 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝐹))
18 simplrr 777 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊))
193, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18nlmvscnlem1 24728 . . . . . 6 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
2019ralrimiva 3152 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
21 simplrl 776 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐹))
22 simprl 770 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝐹))
2321, 22ovresd 7617 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) = (𝑥(dist‘𝐹)𝑧))
2423breq1d 5176 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝐹)𝑧) < 𝑠))
25 simplrr 777 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
26 simprr 772 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊))
2725, 26ovresd 7617 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤))
2827breq1d 5176 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠))
2924, 28anbi12d 631 . . . . . . . . 9 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠)))
302, 3, 4, 5, 12scafval 20901 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 · 𝑦) = (𝑥( ·𝑠𝑊)𝑦))
3130ad2antlr 726 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 · 𝑦) = (𝑥( ·𝑠𝑊)𝑦))
322, 3, 4, 5, 12scafval 20901 . . . . . . . . . . . . 13 ((𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 · 𝑤) = (𝑧( ·𝑠𝑊)𝑤))
3332adantl 481 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 · 𝑤) = (𝑧( ·𝑠𝑊)𝑤))
3431, 33oveq12d 7466 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠𝑊)𝑤)))
351ad2antrr 725 . . . . . . . . . . . . 13 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
362, 3, 12, 4lmodvscl 20898 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
3735, 21, 25, 36syl3anc 1371 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
382, 3, 12, 4lmodvscl 20898 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊))
3935, 22, 26, 38syl3anc 1371 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊))
4037, 39ovresd 7617 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠𝑊)𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)))
4134, 40eqtrd 2780 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)))
4241breq1d 5176 . . . . . . . . 9 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟 ↔ ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
4329, 42imbi12d 344 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
44432ralbidva 3225 . . . . . . 7 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4544rexbidv 3185 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4645ralbidv 3184 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4720, 46mpbird 257 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))
4847ralrimivva 3208 . . 3 (𝑊 ∈ NrmMod → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))
493nlmngp2 24722 . . . . . 6 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
50 ngpms 24634 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
5149, 50syl 17 . . . . 5 (𝑊 ∈ NrmMod → 𝐹 ∈ MetSp)
52 msxms 24485 . . . . 5 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
53 eqid 2740 . . . . . 6 ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) = ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))
544, 53xmsxmet 24487 . . . . 5 (𝐹 ∈ ∞MetSp → ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)))
5551, 52, 543syl 18 . . . 4 (𝑊 ∈ NrmMod → ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)))
56 nlmngp 24719 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
57 ngpms 24634 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
5856, 57syl 17 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ MetSp)
59 msxms 24485 . . . . 5 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
60 eqid 2740 . . . . . 6 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
612, 60xmsxmet 24487 . . . . 5 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
6258, 59, 613syl 18 . . . 4 (𝑊 ∈ NrmMod → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
63 eqid 2740 . . . . 5 (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))))
64 eqid 2740 . . . . 5 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
6563, 64, 64txmetcn 24582 . . . 4 ((((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊))) → ( · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))))
6655, 62, 62, 65syl3anc 1371 . . 3 (𝑊 ∈ NrmMod → ( · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))))
677, 48, 66mpbir2and 712 . 2 (𝑊 ∈ NrmMod → · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
68 nlmvscn.kf . . . . . 6 𝐾 = (TopOpen‘𝐹)
6968, 4, 53mstopn 24483 . . . . 5 (𝐹 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))))
7051, 69syl 17 . . . 4 (𝑊 ∈ NrmMod → 𝐾 = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))))
71 nlmvscn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
7271, 2, 60mstopn 24483 . . . . 5 (𝑊 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7358, 72syl 17 . . . 4 (𝑊 ∈ NrmMod → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7470, 73oveq12d 7466 . . 3 (𝑊 ∈ NrmMod → (𝐾 ×t 𝐽) = ((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7574, 73oveq12d 7466 . 2 (𝑊 ∈ NrmMod → ((𝐾 ×t 𝐽) Cn 𝐽) = (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7667, 75eleqtrrd 2847 1 (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166   × cxp 5698  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187   < clt 11324   / cdiv 11947  2c2 12348  +crp 13057  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  distcds 17320  TopOpenctopn 17481  LModclmod 20880   ·sf cscaf 20881  ∞Metcxmet 21372  MetOpencmopn 21377   Cn ccn 23253   ×t ctx 23589  ∞MetSpcxms 24348  MetSpcms 24349  normcnm 24610  NrmGrpcngp 24611  NrmModcnlm 24614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882  df-scaf 20883  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-nm 24616  df-ngp 24617  df-nrg 24619  df-nlm 24620
This theorem is referenced by:  nrgtrg  24732  nlmtlm  24736
  Copyright terms: Public domain W3C validator