Step | Hyp | Ref
| Expression |
1 | | nlmlmod 23842 |
. . . 4
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
3 | | nlmvscn.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
4 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐹) =
(Base‘𝐹) |
5 | | nlmvscn.sf |
. . . . 5
⊢ · = (
·sf ‘𝑊) |
6 | 2, 3, 4, 5 | lmodscaf 20145 |
. . . 4
⊢ (𝑊 ∈ LMod → ·
:((Base‘𝐹) ×
(Base‘𝑊))⟶(Base‘𝑊)) |
7 | 1, 6 | syl 17 |
. . 3
⊢ (𝑊 ∈ NrmMod → ·
:((Base‘𝐹) ×
(Base‘𝑊))⟶(Base‘𝑊)) |
8 | | eqid 2738 |
. . . . . . 7
⊢
(dist‘𝑊) =
(dist‘𝑊) |
9 | | eqid 2738 |
. . . . . . 7
⊢
(dist‘𝐹) =
(dist‘𝐹) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(norm‘𝑊) =
(norm‘𝑊) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(norm‘𝐹) =
(norm‘𝐹) |
12 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
13 | | eqid 2738 |
. . . . . . 7
⊢ ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)) |
14 | | eqid 2738 |
. . . . . . 7
⊢ ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)))) |
15 | | simpll 764 |
. . . . . . 7
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ NrmMod) |
16 | | simpr 485 |
. . . . . . 7
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
17 | | simplrl 774 |
. . . . . . 7
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝐹)) |
18 | | simplrr 775 |
. . . . . . 7
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊)) |
19 | 3, 2, 4, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18 | nlmvscnlem1 23850 |
. . . . . 6
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) →
∃𝑠 ∈
ℝ+ ∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤)) < 𝑟)) |
20 | 19 | ralrimiva 3103 |
. . . . 5
⊢ ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤)) < 𝑟)) |
21 | | simplrl 774 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐹)) |
22 | | simprl 768 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝐹)) |
23 | 21, 22 | ovresd 7439 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) = (𝑥(dist‘𝐹)𝑧)) |
24 | 23 | breq1d 5084 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝐹)𝑧) < 𝑠)) |
25 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
26 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊)) |
27 | 25, 26 | ovresd 7439 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤)) |
28 | 27 | breq1d 5084 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠)) |
29 | 24, 28 | anbi12d 631 |
. . . . . . . . 9
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠))) |
30 | 2, 3, 4, 5, 12 | scafval 20142 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 · 𝑦) = (𝑥( ·𝑠
‘𝑊)𝑦)) |
31 | 30 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 · 𝑦) = (𝑥( ·𝑠
‘𝑊)𝑦)) |
32 | 2, 3, 4, 5, 12 | scafval 20142 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 · 𝑤) = (𝑧( ·𝑠
‘𝑊)𝑤)) |
33 | 32 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 · 𝑤) = (𝑧( ·𝑠
‘𝑊)𝑤)) |
34 | 31, 33 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠
‘𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠
‘𝑊)𝑤))) |
35 | 1 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) |
36 | 2, 3, 12, 4 | lmodvscl 20140 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) |
37 | 35, 21, 25, 36 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥( ·𝑠
‘𝑊)𝑦) ∈ (Base‘𝑊)) |
38 | 2, 3, 12, 4 | lmodvscl 20140 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊)) |
39 | 35, 22, 26, 38 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧( ·𝑠
‘𝑊)𝑤) ∈ (Base‘𝑊)) |
40 | 37, 39 | ovresd 7439 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠
‘𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠
‘𝑊)𝑤)) = ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤))) |
41 | 34, 40 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤))) |
42 | 41 | breq1d 5084 |
. . . . . . . . 9
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟 ↔ ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤)) < 𝑟)) |
43 | 29, 42 | imbi12d 345 |
. . . . . . . 8
⊢ (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤)) < 𝑟))) |
44 | 43 | 2ralbidva 3128 |
. . . . . . 7
⊢ ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤)) < 𝑟))) |
45 | 44 | rexbidv 3226 |
. . . . . 6
⊢ ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+ ∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+ ∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤)) < 𝑟))) |
46 | 45 | ralbidv 3112 |
. . . . 5
⊢ ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠
‘𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠
‘𝑊)𝑤)) < 𝑟))) |
47 | 20, 46 | mpbird 256 |
. . . 4
⊢ ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟)) |
48 | 47 | ralrimivva 3123 |
. . 3
⊢ (𝑊 ∈ NrmMod →
∀𝑥 ∈
(Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟)) |
49 | 3 | nlmngp2 23844 |
. . . . . 6
⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
50 | | ngpms 23756 |
. . . . . 6
⊢ (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp) |
51 | 49, 50 | syl 17 |
. . . . 5
⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ MetSp) |
52 | | msxms 23607 |
. . . . 5
⊢ (𝐹 ∈ MetSp → 𝐹 ∈
∞MetSp) |
53 | | eqid 2738 |
. . . . . 6
⊢
((dist‘𝐹)
↾ ((Base‘𝐹)
× (Base‘𝐹))) =
((dist‘𝐹) ↾
((Base‘𝐹) ×
(Base‘𝐹))) |
54 | 4, 53 | xmsxmet 23609 |
. . . . 5
⊢ (𝐹 ∈ ∞MetSp →
((dist‘𝐹) ↾
((Base‘𝐹) ×
(Base‘𝐹))) ∈
(∞Met‘(Base‘𝐹))) |
55 | 51, 52, 54 | 3syl 18 |
. . . 4
⊢ (𝑊 ∈ NrmMod →
((dist‘𝐹) ↾
((Base‘𝐹) ×
(Base‘𝐹))) ∈
(∞Met‘(Base‘𝐹))) |
56 | | nlmngp 23841 |
. . . . . 6
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
57 | | ngpms 23756 |
. . . . . 6
⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp) |
58 | 56, 57 | syl 17 |
. . . . 5
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ MetSp) |
59 | | msxms 23607 |
. . . . 5
⊢ (𝑊 ∈ MetSp → 𝑊 ∈
∞MetSp) |
60 | | eqid 2738 |
. . . . . 6
⊢
((dist‘𝑊)
↾ ((Base‘𝑊)
× (Base‘𝑊))) =
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) |
61 | 2, 60 | xmsxmet 23609 |
. . . . 5
⊢ (𝑊 ∈ ∞MetSp →
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) ∈
(∞Met‘(Base‘𝑊))) |
62 | 58, 59, 61 | 3syl 18 |
. . . 4
⊢ (𝑊 ∈ NrmMod →
((dist‘𝑊) ↾
((Base‘𝑊) ×
(Base‘𝑊))) ∈
(∞Met‘(Base‘𝑊))) |
63 | | eqid 2738 |
. . . . 5
⊢
(MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) |
64 | | eqid 2738 |
. . . . 5
⊢
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) |
65 | 63, 64, 64 | txmetcn 23704 |
. . . 4
⊢
((((dist‘𝐹)
↾ ((Base‘𝐹)
× (Base‘𝐹)))
∈ (∞Met‘(Base‘𝐹)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈
(∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈
(∞Met‘(Base‘𝑊))) → ( · ∈
(((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( ·
:((Base‘𝐹) ×
(Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟)))) |
66 | 55, 62, 62, 65 | syl3anc 1370 |
. . 3
⊢ (𝑊 ∈ NrmMod → ( · ∈
(((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( ·
:((Base‘𝐹) ×
(Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟)))) |
67 | 7, 48, 66 | mpbir2and 710 |
. 2
⊢ (𝑊 ∈ NrmMod → · ∈
(((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))) |
68 | | nlmvscn.kf |
. . . . . 6
⊢ 𝐾 = (TopOpen‘𝐹) |
69 | 68, 4, 53 | mstopn 23605 |
. . . . 5
⊢ (𝐹 ∈ MetSp → 𝐾 =
(MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))))) |
70 | 51, 69 | syl 17 |
. . . 4
⊢ (𝑊 ∈ NrmMod → 𝐾 =
(MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))))) |
71 | | nlmvscn.j |
. . . . . 6
⊢ 𝐽 = (TopOpen‘𝑊) |
72 | 71, 2, 60 | mstopn 23605 |
. . . . 5
⊢ (𝑊 ∈ MetSp → 𝐽 =
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) |
73 | 58, 72 | syl 17 |
. . . 4
⊢ (𝑊 ∈ NrmMod → 𝐽 =
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) |
74 | 70, 73 | oveq12d 7293 |
. . 3
⊢ (𝑊 ∈ NrmMod → (𝐾 ×t 𝐽) =
((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))) |
75 | 74, 73 | oveq12d 7293 |
. 2
⊢ (𝑊 ∈ NrmMod → ((𝐾 ×t 𝐽) Cn 𝐽) = (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t
(MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))) |
76 | 67, 75 | eleqtrrd 2842 |
1
⊢ (𝑊 ∈ NrmMod → · ∈
((𝐾 ×t
𝐽) Cn 𝐽)) |