MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdi Structured version   Visualization version   GIF version

Theorem nlmdsdi 24576
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdi.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
nlmdsdi ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)))

Proof of Theorem nlmdsdi
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 simpr1 1195 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑋𝐾)
3 nlmngp 24572 . . . . . . 7 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
43adantr 480 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ NrmGrp)
5 ngpgrp 24494 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ Grp)
7 simpr2 1196 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑌𝑉)
8 simpr3 1197 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑍𝑉)
9 nlmdsdi.v . . . . . 6 𝑉 = (Base‘𝑊)
10 eqid 2730 . . . . . 6 (-g𝑊) = (-g𝑊)
119, 10grpsubcl 18959 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑌𝑉𝑍𝑉) → (𝑌(-g𝑊)𝑍) ∈ 𝑉)
126, 7, 8, 11syl3anc 1373 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑌(-g𝑊)𝑍) ∈ 𝑉)
13 eqid 2730 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
14 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
15 nlmdsdi.f . . . . 5 𝐹 = (Scalar‘𝑊)
16 nlmdsdi.k . . . . 5 𝐾 = (Base‘𝐹)
17 nlmdsdi.a . . . . 5 𝐴 = (norm‘𝐹)
189, 13, 14, 15, 16, 17nmvs 24571 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑋𝐾 ∧ (𝑌(-g𝑊)𝑍) ∈ 𝑉) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
191, 2, 12, 18syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
20 nlmlmod 24573 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2120adantr 480 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ LMod)
229, 14, 15, 16, 10, 21, 2, 7, 8lmodsubdi 20832 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · (𝑌(-g𝑊)𝑍)) = ((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍)))
2322fveq2d 6865 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
2419, 23eqtr3d 2767 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
25 nlmdsdi.d . . . . 5 𝐷 = (dist‘𝑊)
2613, 9, 10, 25ngpds 24499 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑍𝑉) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍)))
274, 7, 8, 26syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍)))
2827oveq2d 7406 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
299, 15, 14, 16lmodvscl 20791 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
3021, 2, 7, 29syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · 𝑌) ∈ 𝑉)
319, 15, 14, 16lmodvscl 20791 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3221, 2, 8, 31syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3313, 9, 10, 25ngpds 24499 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑌) ∈ 𝑉 ∧ (𝑋 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
344, 30, 32, 33syl3anc 1373 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
3524, 28, 343eqtr4d 2775 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390   · cmul 11080  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  distcds 17236  Grpcgrp 18872  -gcsg 18874  LModclmod 20773  normcnm 24471  NrmGrpcngp 24472  NrmModcnlm 24475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-lmod 20775  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nlm 24481
This theorem is referenced by:  nlmvscnlem2  24580
  Copyright terms: Public domain W3C validator