Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlmdsdi | Structured version Visualization version GIF version |
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nlmdsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
nlmdsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
nlmdsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
nlmdsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
nlmdsdi.d | ⊢ 𝐷 = (dist‘𝑊) |
nlmdsdi.a | ⊢ 𝐴 = (norm‘𝐹) |
Ref | Expression |
---|---|
nlmdsdi | ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmMod) | |
2 | simpr1 1192 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ 𝐾) | |
3 | nlmngp 23747 | . . . . . . 7 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmGrp) |
5 | ngpgrp 23661 | . . . . . 6 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ Grp) |
7 | simpr2 1193 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑌 ∈ 𝑉) | |
8 | simpr3 1194 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) | |
9 | nlmdsdi.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
10 | eqid 2738 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
11 | 9, 10 | grpsubcl 18570 | . . . . 5 ⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) |
12 | 6, 7, 8, 11 | syl3anc 1369 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) |
13 | eqid 2738 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
14 | nlmdsdi.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
15 | nlmdsdi.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
16 | nlmdsdi.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
17 | nlmdsdi.a | . . . . 5 ⊢ 𝐴 = (norm‘𝐹) | |
18 | 9, 13, 14, 15, 16, 17 | nmvs 23746 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
19 | 1, 2, 12, 18 | syl3anc 1369 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
20 | nlmlmod 23748 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ LMod) |
22 | 9, 14, 15, 16, 10, 21, 2, 7, 8 | lmodsubdi 20095 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · (𝑌(-g‘𝑊)𝑍)) = ((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍))) |
23 | 22 | fveq2d 6760 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
24 | 19, 23 | eqtr3d 2780 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
25 | nlmdsdi.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑊) | |
26 | 13, 9, 10, 25 | ngpds 23666 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) |
27 | 4, 7, 8, 26 | syl3anc 1369 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) |
28 | 27 | oveq2d 7271 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
29 | 9, 15, 14, 16 | lmodvscl 20055 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
30 | 21, 2, 7, 29 | syl3anc 1369 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑌) ∈ 𝑉) |
31 | 9, 15, 14, 16 | lmodvscl 20055 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑋 · 𝑍) ∈ 𝑉) |
32 | 21, 2, 8, 31 | syl3anc 1369 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑍) ∈ 𝑉) |
33 | 13, 9, 10, 25 | ngpds 23666 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑌) ∈ 𝑉 ∧ (𝑋 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
34 | 4, 30, 32, 33 | syl3anc 1369 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
35 | 24, 28, 34 | 3eqtr4d 2788 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 · cmul 10807 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 distcds 16897 Grpcgrp 18492 -gcsg 18494 LModclmod 20038 normcnm 23638 NrmGrpcngp 23639 NrmModcnlm 23642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-topgen 17071 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-xms 23381 df-ms 23382 df-nm 23644 df-ngp 23645 df-nlm 23648 |
This theorem is referenced by: nlmvscnlem2 23755 |
Copyright terms: Public domain | W3C validator |