![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmdsdi | Structured version Visualization version GIF version |
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nlmdsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
nlmdsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
nlmdsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
nlmdsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
nlmdsdi.d | ⊢ 𝐷 = (dist‘𝑊) |
nlmdsdi.a | ⊢ 𝐴 = (norm‘𝐹) |
Ref | Expression |
---|---|
nlmdsdi | ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmMod) | |
2 | simpr1 1193 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ 𝐾) | |
3 | nlmngp 24713 | . . . . . . 7 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmGrp) |
5 | ngpgrp 24627 | . . . . . 6 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ Grp) |
7 | simpr2 1194 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑌 ∈ 𝑉) | |
8 | simpr3 1195 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) | |
9 | nlmdsdi.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
10 | eqid 2734 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
11 | 9, 10 | grpsubcl 19050 | . . . . 5 ⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) |
12 | 6, 7, 8, 11 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) |
13 | eqid 2734 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
14 | nlmdsdi.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
15 | nlmdsdi.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
16 | nlmdsdi.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
17 | nlmdsdi.a | . . . . 5 ⊢ 𝐴 = (norm‘𝐹) | |
18 | 9, 13, 14, 15, 16, 17 | nmvs 24712 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
19 | 1, 2, 12, 18 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
20 | nlmlmod 24714 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ LMod) |
22 | 9, 14, 15, 16, 10, 21, 2, 7, 8 | lmodsubdi 20933 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · (𝑌(-g‘𝑊)𝑍)) = ((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍))) |
23 | 22 | fveq2d 6910 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
24 | 19, 23 | eqtr3d 2776 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
25 | nlmdsdi.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑊) | |
26 | 13, 9, 10, 25 | ngpds 24632 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) |
27 | 4, 7, 8, 26 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) |
28 | 27 | oveq2d 7446 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
29 | 9, 15, 14, 16 | lmodvscl 20892 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
30 | 21, 2, 7, 29 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑌) ∈ 𝑉) |
31 | 9, 15, 14, 16 | lmodvscl 20892 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑋 · 𝑍) ∈ 𝑉) |
32 | 21, 2, 8, 31 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑍) ∈ 𝑉) |
33 | 13, 9, 10, 25 | ngpds 24632 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑌) ∈ 𝑉 ∧ (𝑋 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
34 | 4, 30, 32, 33 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
35 | 24, 28, 34 | 3eqtr4d 2784 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 · cmul 11157 Basecbs 17244 Scalarcsca 17300 ·𝑠 cvsca 17301 distcds 17306 Grpcgrp 18963 -gcsg 18965 LModclmod 20874 normcnm 24604 NrmGrpcngp 24605 NrmModcnlm 24608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-0g 17487 df-topgen 17489 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-lmod 20876 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-xms 24345 df-ms 24346 df-nm 24610 df-ngp 24611 df-nlm 24614 |
This theorem is referenced by: nlmvscnlem2 24721 |
Copyright terms: Public domain | W3C validator |