MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdi Structured version   Visualization version   GIF version

Theorem nlmdsdi 24567
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdi.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
nlmdsdi ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)))

Proof of Theorem nlmdsdi
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 simpr1 1195 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑋𝐾)
3 nlmngp 24563 . . . . . . 7 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
43adantr 480 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ NrmGrp)
5 ngpgrp 24485 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ Grp)
7 simpr2 1196 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑌𝑉)
8 simpr3 1197 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑍𝑉)
9 nlmdsdi.v . . . . . 6 𝑉 = (Base‘𝑊)
10 eqid 2729 . . . . . 6 (-g𝑊) = (-g𝑊)
119, 10grpsubcl 18899 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑌𝑉𝑍𝑉) → (𝑌(-g𝑊)𝑍) ∈ 𝑉)
126, 7, 8, 11syl3anc 1373 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑌(-g𝑊)𝑍) ∈ 𝑉)
13 eqid 2729 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
14 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
15 nlmdsdi.f . . . . 5 𝐹 = (Scalar‘𝑊)
16 nlmdsdi.k . . . . 5 𝐾 = (Base‘𝐹)
17 nlmdsdi.a . . . . 5 𝐴 = (norm‘𝐹)
189, 13, 14, 15, 16, 17nmvs 24562 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑋𝐾 ∧ (𝑌(-g𝑊)𝑍) ∈ 𝑉) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
191, 2, 12, 18syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
20 nlmlmod 24564 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2120adantr 480 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ LMod)
229, 14, 15, 16, 10, 21, 2, 7, 8lmodsubdi 20822 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · (𝑌(-g𝑊)𝑍)) = ((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍)))
2322fveq2d 6826 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
2419, 23eqtr3d 2766 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
25 nlmdsdi.d . . . . 5 𝐷 = (dist‘𝑊)
2613, 9, 10, 25ngpds 24490 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑍𝑉) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍)))
274, 7, 8, 26syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍)))
2827oveq2d 7365 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
299, 15, 14, 16lmodvscl 20781 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
3021, 2, 7, 29syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · 𝑌) ∈ 𝑉)
319, 15, 14, 16lmodvscl 20781 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3221, 2, 8, 31syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3313, 9, 10, 25ngpds 24490 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑌) ∈ 𝑉 ∧ (𝑋 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
344, 30, 32, 33syl3anc 1373 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
3524, 28, 343eqtr4d 2774 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349   · cmul 11014  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  distcds 17170  Grpcgrp 18812  -gcsg 18814  LModclmod 20763  normcnm 24462  NrmGrpcngp 24463  NrmModcnlm 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-topgen 17347  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20765  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-xms 24206  df-ms 24207  df-nm 24468  df-ngp 24469  df-nlm 24472
This theorem is referenced by:  nlmvscnlem2  24571
  Copyright terms: Public domain W3C validator