MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdi Structured version   Visualization version   GIF version

Theorem nlmdsdi 24602
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdi.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
nlmdsdi ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)))

Proof of Theorem nlmdsdi
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 simpr1 1195 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑋𝐾)
3 nlmngp 24598 . . . . . . 7 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
43adantr 480 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ NrmGrp)
5 ngpgrp 24520 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ Grp)
7 simpr2 1196 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑌𝑉)
8 simpr3 1197 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑍𝑉)
9 nlmdsdi.v . . . . . 6 𝑉 = (Base‘𝑊)
10 eqid 2729 . . . . . 6 (-g𝑊) = (-g𝑊)
119, 10grpsubcl 18934 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑌𝑉𝑍𝑉) → (𝑌(-g𝑊)𝑍) ∈ 𝑉)
126, 7, 8, 11syl3anc 1373 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑌(-g𝑊)𝑍) ∈ 𝑉)
13 eqid 2729 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
14 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
15 nlmdsdi.f . . . . 5 𝐹 = (Scalar‘𝑊)
16 nlmdsdi.k . . . . 5 𝐾 = (Base‘𝐹)
17 nlmdsdi.a . . . . 5 𝐴 = (norm‘𝐹)
189, 13, 14, 15, 16, 17nmvs 24597 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑋𝐾 ∧ (𝑌(-g𝑊)𝑍) ∈ 𝑉) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
191, 2, 12, 18syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
20 nlmlmod 24599 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2120adantr 480 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → 𝑊 ∈ LMod)
229, 14, 15, 16, 10, 21, 2, 7, 8lmodsubdi 20857 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · (𝑌(-g𝑊)𝑍)) = ((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍)))
2322fveq2d 6844 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
2419, 23eqtr3d 2766 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
25 nlmdsdi.d . . . . 5 𝐷 = (dist‘𝑊)
2613, 9, 10, 25ngpds 24525 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑍𝑉) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍)))
274, 7, 8, 26syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍)))
2827oveq2d 7385 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝐴𝑋) · ((norm‘𝑊)‘(𝑌(-g𝑊)𝑍))))
299, 15, 14, 16lmodvscl 20816 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
3021, 2, 7, 29syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · 𝑌) ∈ 𝑉)
319, 15, 14, 16lmodvscl 20816 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3221, 2, 8, 31syl3anc 1373 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3313, 9, 10, 25ngpds 24525 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑌) ∈ 𝑉 ∧ (𝑋 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
344, 30, 32, 33syl3anc 1373 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g𝑊)(𝑋 · 𝑍))))
3524, 28, 343eqtr4d 2774 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝑉𝑍𝑉)) → ((𝐴𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369   · cmul 11049  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  distcds 17205  Grpcgrp 18847  -gcsg 18849  LModclmod 20798  normcnm 24497  NrmGrpcngp 24498  NrmModcnlm 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-lmod 20800  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-nlm 24507
This theorem is referenced by:  nlmvscnlem2  24606
  Copyright terms: Public domain W3C validator