| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmdsdi | Structured version Visualization version GIF version | ||
| Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmdsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
| nlmdsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| nlmdsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| nlmdsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
| nlmdsdi.d | ⊢ 𝐷 = (dist‘𝑊) |
| nlmdsdi.a | ⊢ 𝐴 = (norm‘𝐹) |
| Ref | Expression |
|---|---|
| nlmdsdi | ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmMod) | |
| 2 | simpr1 1195 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ 𝐾) | |
| 3 | nlmngp 24565 | . . . . . . 7 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmGrp) |
| 5 | ngpgrp 24487 | . . . . . 6 ⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ Grp) |
| 7 | simpr2 1196 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑌 ∈ 𝑉) | |
| 8 | simpr3 1197 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) | |
| 9 | nlmdsdi.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 11 | 9, 10 | grpsubcl 18952 | . . . . 5 ⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) |
| 13 | eqid 2729 | . . . . 5 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 14 | nlmdsdi.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 15 | nlmdsdi.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 16 | nlmdsdi.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 17 | nlmdsdi.a | . . . . 5 ⊢ 𝐴 = (norm‘𝐹) | |
| 18 | 9, 13, 14, 15, 16, 17 | nmvs 24564 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ (𝑌(-g‘𝑊)𝑍) ∈ 𝑉) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
| 19 | 1, 2, 12, 18 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
| 20 | nlmlmod 24566 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 22 | 9, 14, 15, 16, 10, 21, 2, 7, 8 | lmodsubdi 20825 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · (𝑌(-g‘𝑊)𝑍)) = ((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍))) |
| 23 | 22 | fveq2d 6862 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((norm‘𝑊)‘(𝑋 · (𝑌(-g‘𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
| 24 | 19, 23 | eqtr3d 2766 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
| 25 | nlmdsdi.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑊) | |
| 26 | 13, 9, 10, 25 | ngpds 24492 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) |
| 27 | 4, 7, 8, 26 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑌𝐷𝑍) = ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍))) |
| 28 | 27 | oveq2d 7403 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝐴‘𝑋) · ((norm‘𝑊)‘(𝑌(-g‘𝑊)𝑍)))) |
| 29 | 9, 15, 14, 16 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
| 30 | 21, 2, 7, 29 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑌) ∈ 𝑉) |
| 31 | 9, 15, 14, 16 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑋 · 𝑍) ∈ 𝑉) |
| 32 | 21, 2, 8, 31 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑍) ∈ 𝑉) |
| 33 | 13, 9, 10, 25 | ngpds 24492 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑌) ∈ 𝑉 ∧ (𝑋 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
| 34 | 4, 30, 32, 33 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍)) = ((norm‘𝑊)‘((𝑋 · 𝑌)(-g‘𝑊)(𝑋 · 𝑍)))) |
| 35 | 24, 28, 34 | 3eqtr4d 2774 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝐴‘𝑋) · (𝑌𝐷𝑍)) = ((𝑋 · 𝑌)𝐷(𝑋 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 · cmul 11073 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 distcds 17229 Grpcgrp 18865 -gcsg 18867 LModclmod 20766 normcnm 24464 NrmGrpcngp 24465 NrmModcnlm 24468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-topgen 17406 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-lmod 20768 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-ms 24209 df-nm 24470 df-ngp 24471 df-nlm 24474 |
| This theorem is referenced by: nlmvscnlem2 24573 |
| Copyright terms: Public domain | W3C validator |