MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdir Structured version   Visualization version   GIF version

Theorem nlmdsdir 23288
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdir.n 𝑁 = (norm‘𝑊)
nlmdsdir.e 𝐸 = (dist‘𝐹)
Assertion
Ref Expression
nlmdsdir ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))

Proof of Theorem nlmdsdir
StepHypRef Expression
1 simpl 486 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 nlmdsdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32nlmngp2 23286 . . . . . . 7 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
43adantr 484 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ NrmGrp)
5 ngpgrp 23205 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ Grp)
7 simpr1 1191 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑋𝐾)
8 simpr2 1192 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑌𝐾)
9 nlmdsdi.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2798 . . . . . 6 (-g𝐹) = (-g𝐹)
119, 10grpsubcl 18171 . . . . 5 ((𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
126, 7, 8, 11syl3anc 1368 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
13 simpr3 1193 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑍𝑉)
14 nlmdsdi.v . . . . 5 𝑉 = (Base‘𝑊)
15 nlmdsdir.n . . . . 5 𝑁 = (norm‘𝑊)
16 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2798 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
1814, 15, 16, 2, 9, 17nmvs 23282 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋(-g𝐹)𝑌) ∈ 𝐾𝑍𝑉) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
191, 12, 13, 18syl3anc 1368 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
20 eqid 2798 . . . . 5 (-g𝑊) = (-g𝑊)
21 nlmlmod 23284 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2221adantr 484 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ LMod)
2314, 16, 2, 9, 20, 10, 22, 7, 8, 13lmodsubdir 19685 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋(-g𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍)))
2423fveq2d 6649 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
2519, 24eqtr3d 2835 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
26 nlmdsdir.e . . . . 5 𝐸 = (dist‘𝐹)
2717, 9, 10, 26ngpds 23210 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝑋𝐾𝑌𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
284, 7, 8, 27syl3anc 1368 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
2928oveq1d 7150 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
30 nlmngp 23283 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
3130adantr 484 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmGrp)
3214, 2, 16, 9lmodvscl 19644 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3322, 7, 13, 32syl3anc 1368 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3414, 2, 16, 9lmodvscl 19644 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐾𝑍𝑉) → (𝑌 · 𝑍) ∈ 𝑉)
3522, 8, 13, 34syl3anc 1368 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑌 · 𝑍) ∈ 𝑉)
36 nlmdsdi.d . . . 4 𝐷 = (dist‘𝑊)
3715, 14, 20, 36ngpds 23210 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3831, 33, 35, 37syl3anc 1368 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3925, 29, 383eqtr4d 2843 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135   · cmul 10531  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  distcds 16566  Grpcgrp 18095  -gcsg 18097  LModclmod 19627  normcnm 23183  NrmGrpcngp 23184  NrmModcnlm 23187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-nrg 23192  df-nlm 23193
This theorem is referenced by:  nlmvscnlem2  23291
  Copyright terms: Public domain W3C validator