Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlmdsdir | Structured version Visualization version GIF version |
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nlmdsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
nlmdsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
nlmdsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
nlmdsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
nlmdsdi.d | ⊢ 𝐷 = (dist‘𝑊) |
nlmdsdir.n | ⊢ 𝑁 = (norm‘𝑊) |
nlmdsdir.e | ⊢ 𝐸 = (dist‘𝐹) |
Ref | Expression |
---|---|
nlmdsdir | ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmMod) | |
2 | nlmdsdi.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | nlmngp2 23832 | . . . . . . 7 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ NrmGrp) |
5 | ngpgrp 23743 | . . . . . 6 ⊢ (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ Grp) |
7 | simpr1 1193 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ 𝐾) | |
8 | simpr2 1194 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑌 ∈ 𝐾) | |
9 | nlmdsdi.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2738 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
11 | 9, 10 | grpsubcl 18643 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
12 | 6, 7, 8, 11 | syl3anc 1370 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
13 | simpr3 1195 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) | |
14 | nlmdsdi.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
15 | nlmdsdir.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
16 | nlmdsdi.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | eqid 2738 | . . . . 5 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
18 | 14, 15, 16, 2, 9, 17 | nmvs 23828 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋(-g‘𝐹)𝑌) ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
19 | 1, 12, 13, 18 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
20 | eqid 2738 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
21 | nlmlmod 23830 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
22 | 21 | adantr 481 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ LMod) |
23 | 14, 16, 2, 9, 20, 10, 22, 7, 8, 13 | lmodsubdir 20169 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋(-g‘𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍))) |
24 | 23 | fveq2d 6771 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
25 | 19, 24 | eqtr3d 2780 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
26 | nlmdsdir.e | . . . . 5 ⊢ 𝐸 = (dist‘𝐹) | |
27 | 17, 9, 10, 26 | ngpds 23748 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
28 | 4, 7, 8, 27 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
29 | 28 | oveq1d 7283 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
30 | nlmngp 23829 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
31 | 30 | adantr 481 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmGrp) |
32 | 14, 2, 16, 9 | lmodvscl 20128 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑋 · 𝑍) ∈ 𝑉) |
33 | 22, 7, 13, 32 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑍) ∈ 𝑉) |
34 | 14, 2, 16, 9 | lmodvscl 20128 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑌 · 𝑍) ∈ 𝑉) |
35 | 22, 8, 13, 34 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑌 · 𝑍) ∈ 𝑉) |
36 | nlmdsdi.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
37 | 15, 14, 20, 36 | ngpds 23748 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
38 | 31, 33, 35, 37 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
39 | 25, 29, 38 | 3eqtr4d 2788 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6427 (class class class)co 7268 · cmul 10864 Basecbs 16900 Scalarcsca 16953 ·𝑠 cvsca 16954 distcds 16959 Grpcgrp 18565 -gcsg 18567 LModclmod 20111 normcnm 23720 NrmGrpcngp 23721 NrmModcnlm 23724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-map 8605 df-en 8722 df-dom 8723 df-sdom 8724 df-sup 9189 df-inf 9190 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-n0 12222 df-z 12308 df-uz 12571 df-q 12677 df-rp 12719 df-xneg 12836 df-xadd 12837 df-xmul 12838 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-plusg 16963 df-0g 17140 df-topgen 17142 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-grp 18568 df-minusg 18569 df-sbg 18570 df-mgp 19709 df-ur 19726 df-ring 19773 df-lmod 20113 df-psmet 20577 df-xmet 20578 df-met 20579 df-bl 20580 df-mopn 20581 df-top 22031 df-topon 22048 df-topsp 22070 df-bases 22084 df-xms 23461 df-ms 23462 df-nm 23726 df-ngp 23727 df-nrg 23729 df-nlm 23730 |
This theorem is referenced by: nlmvscnlem2 23837 |
Copyright terms: Public domain | W3C validator |