| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmdsdir | Structured version Visualization version GIF version | ||
| Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmdsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
| nlmdsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| nlmdsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| nlmdsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
| nlmdsdi.d | ⊢ 𝐷 = (dist‘𝑊) |
| nlmdsdir.n | ⊢ 𝑁 = (norm‘𝑊) |
| nlmdsdir.e | ⊢ 𝐸 = (dist‘𝐹) |
| Ref | Expression |
|---|---|
| nlmdsdir | ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmMod) | |
| 2 | nlmdsdi.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | nlmngp2 24575 | . . . . . . 7 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ NrmGrp) |
| 5 | ngpgrp 24494 | . . . . . 6 ⊢ (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ Grp) |
| 7 | simpr1 1195 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ 𝐾) | |
| 8 | simpr2 1196 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑌 ∈ 𝐾) | |
| 9 | nlmdsdi.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2730 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
| 11 | 9, 10 | grpsubcl 18959 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
| 13 | simpr3 1197 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) | |
| 14 | nlmdsdi.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | nlmdsdir.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
| 16 | nlmdsdi.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | eqid 2730 | . . . . 5 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
| 18 | 14, 15, 16, 2, 9, 17 | nmvs 24571 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋(-g‘𝐹)𝑌) ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
| 19 | 1, 12, 13, 18 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
| 20 | eqid 2730 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 21 | nlmlmod 24573 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 23 | 14, 16, 2, 9, 20, 10, 22, 7, 8, 13 | lmodsubdir 20833 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋(-g‘𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍))) |
| 24 | 23 | fveq2d 6865 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
| 25 | 19, 24 | eqtr3d 2767 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
| 26 | nlmdsdir.e | . . . . 5 ⊢ 𝐸 = (dist‘𝐹) | |
| 27 | 17, 9, 10, 26 | ngpds 24499 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
| 28 | 4, 7, 8, 27 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
| 29 | 28 | oveq1d 7405 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
| 30 | nlmngp 24572 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmGrp) |
| 32 | 14, 2, 16, 9 | lmodvscl 20791 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑋 · 𝑍) ∈ 𝑉) |
| 33 | 22, 7, 13, 32 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑍) ∈ 𝑉) |
| 34 | 14, 2, 16, 9 | lmodvscl 20791 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑌 · 𝑍) ∈ 𝑉) |
| 35 | 22, 8, 13, 34 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑌 · 𝑍) ∈ 𝑉) |
| 36 | nlmdsdi.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
| 37 | 15, 14, 20, 36 | ngpds 24499 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
| 38 | 31, 33, 35, 37 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
| 39 | 25, 29, 38 | 3eqtr4d 2775 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 · cmul 11080 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 distcds 17236 Grpcgrp 18872 -gcsg 18874 LModclmod 20773 normcnm 24471 NrmGrpcngp 24472 NrmModcnlm 24475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-topgen 17413 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-lmod 20775 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-xms 24215 df-ms 24216 df-nm 24477 df-ngp 24478 df-nrg 24480 df-nlm 24481 |
| This theorem is referenced by: nlmvscnlem2 24580 |
| Copyright terms: Public domain | W3C validator |