![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmdsdir | Structured version Visualization version GIF version |
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nlmdsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
nlmdsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
nlmdsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
nlmdsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
nlmdsdi.d | ⊢ 𝐷 = (dist‘𝑊) |
nlmdsdir.n | ⊢ 𝑁 = (norm‘𝑊) |
nlmdsdir.e | ⊢ 𝐸 = (dist‘𝐹) |
Ref | Expression |
---|---|
nlmdsdir | ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmMod) | |
2 | nlmdsdi.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | nlmngp2 22809 | . . . . . . 7 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
4 | 3 | adantr 473 | . . . . . 6 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ NrmGrp) |
5 | ngpgrp 22728 | . . . . . 6 ⊢ (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ Grp) |
7 | simpr1 1249 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ 𝐾) | |
8 | simpr2 1251 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑌 ∈ 𝐾) | |
9 | nlmdsdi.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2797 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
11 | 9, 10 | grpsubcl 17808 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
12 | 6, 7, 8, 11 | syl3anc 1491 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
13 | simpr3 1253 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) | |
14 | nlmdsdi.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
15 | nlmdsdir.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
16 | nlmdsdi.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | eqid 2797 | . . . . 5 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
18 | 14, 15, 16, 2, 9, 17 | nmvs 22805 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋(-g‘𝐹)𝑌) ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
19 | 1, 12, 13, 18 | syl3anc 1491 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
20 | eqid 2797 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
21 | nlmlmod 22807 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
22 | 21 | adantr 473 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ LMod) |
23 | 14, 16, 2, 9, 20, 10, 22, 7, 8, 13 | lmodsubdir 19236 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋(-g‘𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍))) |
24 | 23 | fveq2d 6413 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
25 | 19, 24 | eqtr3d 2833 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
26 | nlmdsdir.e | . . . . 5 ⊢ 𝐸 = (dist‘𝐹) | |
27 | 17, 9, 10, 26 | ngpds 22733 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
28 | 4, 7, 8, 27 | syl3anc 1491 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
29 | 28 | oveq1d 6891 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
30 | nlmngp 22806 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
31 | 30 | adantr 473 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmGrp) |
32 | 14, 2, 16, 9 | lmodvscl 19195 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑋 · 𝑍) ∈ 𝑉) |
33 | 22, 7, 13, 32 | syl3anc 1491 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑍) ∈ 𝑉) |
34 | 14, 2, 16, 9 | lmodvscl 19195 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑌 · 𝑍) ∈ 𝑉) |
35 | 22, 8, 13, 34 | syl3anc 1491 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑌 · 𝑍) ∈ 𝑉) |
36 | nlmdsdi.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
37 | 15, 14, 20, 36 | ngpds 22733 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
38 | 31, 33, 35, 37 | syl3anc 1491 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
39 | 25, 29, 38 | 3eqtr4d 2841 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ‘cfv 6099 (class class class)co 6876 · cmul 10227 Basecbs 16181 Scalarcsca 16267 ·𝑠 cvsca 16268 distcds 16273 Grpcgrp 17735 -gcsg 17737 LModclmod 19178 normcnm 22706 NrmGrpcngp 22707 NrmModcnlm 22710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-sup 8588 df-inf 8589 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-n0 11577 df-z 11663 df-uz 11927 df-q 12030 df-rp 12071 df-xneg 12189 df-xadd 12190 df-xmul 12191 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-plusg 16277 df-0g 16414 df-topgen 16416 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mgp 18803 df-ur 18815 df-ring 18862 df-lmod 19180 df-psmet 20057 df-xmet 20058 df-met 20059 df-bl 20060 df-mopn 20061 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-xms 22450 df-ms 22451 df-nm 22712 df-ngp 22713 df-nrg 22715 df-nlm 22716 |
This theorem is referenced by: nlmvscnlem2 22814 |
Copyright terms: Public domain | W3C validator |