| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmdsdir | Structured version Visualization version GIF version | ||
| Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmdsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
| nlmdsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| nlmdsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| nlmdsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
| nlmdsdi.d | ⊢ 𝐷 = (dist‘𝑊) |
| nlmdsdir.n | ⊢ 𝑁 = (norm‘𝑊) |
| nlmdsdir.e | ⊢ 𝐸 = (dist‘𝐹) |
| Ref | Expression |
|---|---|
| nlmdsdir | ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmMod) | |
| 2 | nlmdsdi.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | nlmngp2 24568 | . . . . . . 7 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ NrmGrp) |
| 5 | ngpgrp 24487 | . . . . . 6 ⊢ (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ Grp) |
| 7 | simpr1 1195 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ 𝐾) | |
| 8 | simpr2 1196 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑌 ∈ 𝐾) | |
| 9 | nlmdsdi.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
| 11 | 9, 10 | grpsubcl 18952 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
| 13 | simpr3 1197 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) | |
| 14 | nlmdsdi.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | nlmdsdir.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
| 16 | nlmdsdi.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
| 18 | 14, 15, 16, 2, 9, 17 | nmvs 24564 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋(-g‘𝐹)𝑌) ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
| 19 | 1, 12, 13, 18 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
| 20 | eqid 2729 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
| 21 | nlmlmod 24566 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 23 | 14, 16, 2, 9, 20, 10, 22, 7, 8, 13 | lmodsubdir 20826 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋(-g‘𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍))) |
| 24 | 23 | fveq2d 6862 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
| 25 | 19, 24 | eqtr3d 2766 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
| 26 | nlmdsdir.e | . . . . 5 ⊢ 𝐸 = (dist‘𝐹) | |
| 27 | 17, 9, 10, 26 | ngpds 24492 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
| 28 | 4, 7, 8, 27 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
| 29 | 28 | oveq1d 7402 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
| 30 | nlmngp 24565 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmGrp) |
| 32 | 14, 2, 16, 9 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑋 · 𝑍) ∈ 𝑉) |
| 33 | 22, 7, 13, 32 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑍) ∈ 𝑉) |
| 34 | 14, 2, 16, 9 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑌 · 𝑍) ∈ 𝑉) |
| 35 | 22, 8, 13, 34 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑌 · 𝑍) ∈ 𝑉) |
| 36 | nlmdsdi.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
| 37 | 15, 14, 20, 36 | ngpds 24492 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
| 38 | 31, 33, 35, 37 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
| 39 | 25, 29, 38 | 3eqtr4d 2774 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 · cmul 11073 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 distcds 17229 Grpcgrp 18865 -gcsg 18867 LModclmod 20766 normcnm 24464 NrmGrpcngp 24465 NrmModcnlm 24468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-topgen 17406 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-lmod 20768 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-ms 24209 df-nm 24470 df-ngp 24471 df-nrg 24473 df-nlm 24474 |
| This theorem is referenced by: nlmvscnlem2 24573 |
| Copyright terms: Public domain | W3C validator |