MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdir Structured version   Visualization version   GIF version

Theorem nlmdsdir 23752
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdir.n 𝑁 = (norm‘𝑊)
nlmdsdir.e 𝐸 = (dist‘𝐹)
Assertion
Ref Expression
nlmdsdir ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))

Proof of Theorem nlmdsdir
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 nlmdsdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32nlmngp2 23750 . . . . . . 7 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
43adantr 480 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ NrmGrp)
5 ngpgrp 23661 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ Grp)
7 simpr1 1192 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑋𝐾)
8 simpr2 1193 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑌𝐾)
9 nlmdsdi.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2738 . . . . . 6 (-g𝐹) = (-g𝐹)
119, 10grpsubcl 18570 . . . . 5 ((𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
126, 7, 8, 11syl3anc 1369 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
13 simpr3 1194 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑍𝑉)
14 nlmdsdi.v . . . . 5 𝑉 = (Base‘𝑊)
15 nlmdsdir.n . . . . 5 𝑁 = (norm‘𝑊)
16 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2738 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
1814, 15, 16, 2, 9, 17nmvs 23746 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋(-g𝐹)𝑌) ∈ 𝐾𝑍𝑉) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
191, 12, 13, 18syl3anc 1369 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
20 eqid 2738 . . . . 5 (-g𝑊) = (-g𝑊)
21 nlmlmod 23748 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2221adantr 480 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ LMod)
2314, 16, 2, 9, 20, 10, 22, 7, 8, 13lmodsubdir 20096 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋(-g𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍)))
2423fveq2d 6760 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
2519, 24eqtr3d 2780 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
26 nlmdsdir.e . . . . 5 𝐸 = (dist‘𝐹)
2717, 9, 10, 26ngpds 23666 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝑋𝐾𝑌𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
284, 7, 8, 27syl3anc 1369 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
2928oveq1d 7270 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
30 nlmngp 23747 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
3130adantr 480 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmGrp)
3214, 2, 16, 9lmodvscl 20055 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3322, 7, 13, 32syl3anc 1369 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3414, 2, 16, 9lmodvscl 20055 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐾𝑍𝑉) → (𝑌 · 𝑍) ∈ 𝑉)
3522, 8, 13, 34syl3anc 1369 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑌 · 𝑍) ∈ 𝑉)
36 nlmdsdi.d . . . 4 𝐷 = (dist‘𝑊)
3715, 14, 20, 36ngpds 23666 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3831, 33, 35, 37syl3anc 1369 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3925, 29, 383eqtr4d 2788 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255   · cmul 10807  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  distcds 16897  Grpcgrp 18492  -gcsg 18494  LModclmod 20038  normcnm 23638  NrmGrpcngp 23639  NrmModcnlm 23642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648
This theorem is referenced by:  nlmvscnlem2  23755
  Copyright terms: Public domain W3C validator