MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdir Structured version   Visualization version   GIF version

Theorem nlmdsdir 22863
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdir.n 𝑁 = (norm‘𝑊)
nlmdsdir.e 𝐸 = (dist‘𝐹)
Assertion
Ref Expression
nlmdsdir ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))

Proof of Theorem nlmdsdir
StepHypRef Expression
1 simpl 476 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 nlmdsdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32nlmngp2 22861 . . . . . . 7 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
43adantr 474 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ NrmGrp)
5 ngpgrp 22780 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ Grp)
7 simpr1 1252 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑋𝐾)
8 simpr2 1254 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑌𝐾)
9 nlmdsdi.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2825 . . . . . 6 (-g𝐹) = (-g𝐹)
119, 10grpsubcl 17856 . . . . 5 ((𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
126, 7, 8, 11syl3anc 1494 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
13 simpr3 1256 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑍𝑉)
14 nlmdsdi.v . . . . 5 𝑉 = (Base‘𝑊)
15 nlmdsdir.n . . . . 5 𝑁 = (norm‘𝑊)
16 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2825 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
1814, 15, 16, 2, 9, 17nmvs 22857 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋(-g𝐹)𝑌) ∈ 𝐾𝑍𝑉) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
191, 12, 13, 18syl3anc 1494 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
20 eqid 2825 . . . . 5 (-g𝑊) = (-g𝑊)
21 nlmlmod 22859 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2221adantr 474 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ LMod)
2314, 16, 2, 9, 20, 10, 22, 7, 8, 13lmodsubdir 19284 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋(-g𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍)))
2423fveq2d 6441 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
2519, 24eqtr3d 2863 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
26 nlmdsdir.e . . . . 5 𝐸 = (dist‘𝐹)
2717, 9, 10, 26ngpds 22785 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝑋𝐾𝑌𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
284, 7, 8, 27syl3anc 1494 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
2928oveq1d 6925 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
30 nlmngp 22858 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
3130adantr 474 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmGrp)
3214, 2, 16, 9lmodvscl 19243 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3322, 7, 13, 32syl3anc 1494 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3414, 2, 16, 9lmodvscl 19243 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐾𝑍𝑉) → (𝑌 · 𝑍) ∈ 𝑉)
3522, 8, 13, 34syl3anc 1494 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑌 · 𝑍) ∈ 𝑉)
36 nlmdsdi.d . . . 4 𝐷 = (dist‘𝑊)
3715, 14, 20, 36ngpds 22785 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3831, 33, 35, 37syl3anc 1494 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3925, 29, 383eqtr4d 2871 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  cfv 6127  (class class class)co 6910   · cmul 10264  Basecbs 16229  Scalarcsca 16315   ·𝑠 cvsca 16316  distcds 16321  Grpcgrp 17783  -gcsg 17785  LModclmod 19226  normcnm 22758  NrmGrpcngp 22759  NrmModcnlm 22762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-plusg 16325  df-0g 16462  df-topgen 16464  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-sbg 17788  df-mgp 18851  df-ur 18863  df-ring 18910  df-lmod 19228  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-xms 22502  df-ms 22503  df-nm 22764  df-ngp 22765  df-nrg 22767  df-nlm 22768
This theorem is referenced by:  nlmvscnlem2  22866
  Copyright terms: Public domain W3C validator