MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem2 Structured version   Visualization version   GIF version

Theorem nlmvscnlem2 22859
Description: Lemma for nlmvscn 22861. Compare this proof with the similar elementary proof mulcn2 14703 for continuity of multiplication on . (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.v 𝑉 = (Base‘𝑊)
nlmvscn.k 𝐾 = (Base‘𝐹)
nlmvscn.d 𝐷 = (dist‘𝑊)
nlmvscn.e 𝐸 = (dist‘𝐹)
nlmvscn.n 𝑁 = (norm‘𝑊)
nlmvscn.a 𝐴 = (norm‘𝐹)
nlmvscn.s · = ( ·𝑠𝑊)
nlmvscn.t 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
nlmvscn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
nlmvscn.w (𝜑𝑊 ∈ NrmMod)
nlmvscn.r (𝜑𝑅 ∈ ℝ+)
nlmvscn.b (𝜑𝐵𝐾)
nlmvscn.x (𝜑𝑋𝑉)
nlmvscn.c (𝜑𝐶𝐾)
nlmvscn.y (𝜑𝑌𝑉)
nlmvscn.1 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
nlmvscn.2 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
Assertion
Ref Expression
nlmvscnlem2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)

Proof of Theorem nlmvscnlem2
StepHypRef Expression
1 nlmvscn.w . . . . 5 (𝜑𝑊 ∈ NrmMod)
2 nlmngp 22851 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ NrmGrp)
4 ngpms 22774 . . . 4 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
53, 4syl 17 . . 3 (𝜑𝑊 ∈ MetSp)
6 nlmlmod 22852 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
71, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 nlmvscn.b . . . 4 (𝜑𝐵𝐾)
9 nlmvscn.x . . . 4 (𝜑𝑋𝑉)
10 nlmvscn.v . . . . 5 𝑉 = (Base‘𝑊)
11 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
12 nlmvscn.s . . . . 5 · = ( ·𝑠𝑊)
13 nlmvscn.k . . . . 5 𝐾 = (Base‘𝐹)
1410, 11, 12, 13lmodvscl 19236 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
157, 8, 9, 14syl3anc 1496 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
16 nlmvscn.c . . . 4 (𝜑𝐶𝐾)
17 nlmvscn.y . . . 4 (𝜑𝑌𝑉)
1810, 11, 12, 13lmodvscl 19236 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑌𝑉) → (𝐶 · 𝑌) ∈ 𝑉)
197, 16, 17, 18syl3anc 1496 . . 3 (𝜑 → (𝐶 · 𝑌) ∈ 𝑉)
20 nlmvscn.d . . . 4 𝐷 = (dist‘𝑊)
2110, 20mscl 22636 . . 3 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
225, 15, 19, 21syl3anc 1496 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2310, 11, 12, 13lmodvscl 19236 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑌𝑉) → (𝐵 · 𝑌) ∈ 𝑉)
247, 8, 17, 23syl3anc 1496 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ 𝑉)
2510, 20mscl 22636 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
265, 15, 24, 25syl3anc 1496 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
2710, 20mscl 22636 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑌) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
285, 24, 19, 27syl3anc 1496 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2926, 28readdcld 10386 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) ∈ ℝ)
30 nlmvscn.r . . 3 (𝜑𝑅 ∈ ℝ+)
3130rpred 12156 . 2 (𝜑𝑅 ∈ ℝ)
3210, 20mstri 22644 . . 3 ((𝑊 ∈ MetSp ∧ ((𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉)) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
335, 15, 19, 24, 32syl13anc 1497 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
3411nlmngp2 22854 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
351, 34syl 17 . . . . . . . 8 (𝜑𝐹 ∈ NrmGrp)
36 nlmvscn.a . . . . . . . . 9 𝐴 = (norm‘𝐹)
3713, 36nmcl 22790 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → (𝐴𝐵) ∈ ℝ)
3835, 8, 37syl2anc 581 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℝ)
3913, 36nmge0 22791 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → 0 ≤ (𝐴𝐵))
4035, 8, 39syl2anc 581 . . . . . . 7 (𝜑 → 0 ≤ (𝐴𝐵))
4138, 40ge0p1rpd 12186 . . . . . 6 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ+)
4241rpred 12156 . . . . 5 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ)
4310, 20mscl 22636 . . . . . 6 ((𝑊 ∈ MetSp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) ∈ ℝ)
445, 9, 17, 43syl3anc 1496 . . . . 5 (𝜑 → (𝑋𝐷𝑌) ∈ ℝ)
4542, 44remulcld 10387 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) ∈ ℝ)
4631rehalfcld 11605 . . . 4 (𝜑 → (𝑅 / 2) ∈ ℝ)
4710, 12, 11, 13, 20, 36nlmdsdi 22855 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝑋𝑉𝑌𝑉)) → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
481, 8, 9, 17, 47syl13anc 1497 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
49 msxms 22629 . . . . . . . 8 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
505, 49syl 17 . . . . . . 7 (𝜑𝑊 ∈ ∞MetSp)
5110, 20xmsge0 22638 . . . . . . 7 ((𝑊 ∈ ∞MetSp ∧ 𝑋𝑉𝑌𝑉) → 0 ≤ (𝑋𝐷𝑌))
5250, 9, 17, 51syl3anc 1496 . . . . . 6 (𝜑 → 0 ≤ (𝑋𝐷𝑌))
5338lep1d 11285 . . . . . 6 (𝜑 → (𝐴𝐵) ≤ ((𝐴𝐵) + 1))
5438, 42, 44, 52, 53lemul1ad 11293 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
5548, 54eqbrtrrd 4897 . . . 4 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
56 nlmvscn.2 . . . . . 6 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
57 nlmvscn.t . . . . . 6 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
5856, 57syl6breq 4914 . . . . 5 (𝜑 → (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1)))
5944, 46, 41ltmuldiv2d 12204 . . . . 5 (𝜑 → ((((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2) ↔ (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1))))
6058, 59mpbird 249 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2))
6126, 45, 46, 55, 60lelttrd 10514 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) < (𝑅 / 2))
62 ngpms 22774 . . . . . . 7 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
6335, 62syl 17 . . . . . 6 (𝜑𝐹 ∈ MetSp)
64 nlmvscn.e . . . . . . 7 𝐸 = (dist‘𝐹)
6513, 64mscl 22636 . . . . . 6 ((𝐹 ∈ MetSp ∧ 𝐵𝐾𝐶𝐾) → (𝐵𝐸𝐶) ∈ ℝ)
6663, 8, 16, 65syl3anc 1496 . . . . 5 (𝜑 → (𝐵𝐸𝐶) ∈ ℝ)
67 nlmvscn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
6810, 67nmcl 22790 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ ℝ)
693, 9, 68syl2anc 581 . . . . . 6 (𝜑 → (𝑁𝑋) ∈ ℝ)
7030rphalfcld 12168 . . . . . . . . 9 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7170, 41rpdivcld 12173 . . . . . . . 8 (𝜑 → ((𝑅 / 2) / ((𝐴𝐵) + 1)) ∈ ℝ+)
7257, 71syl5eqel 2910 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
7372rpred 12156 . . . . . 6 (𝜑𝑇 ∈ ℝ)
7469, 73readdcld 10386 . . . . 5 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ)
7566, 74remulcld 10387 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) ∈ ℝ)
7610, 12, 11, 13, 20, 67, 64nlmdsdir 22856 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝐶𝐾𝑌𝑉)) → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
771, 8, 16, 17, 76syl13anc 1497 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
7810, 67nmcl 22790 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
793, 17, 78syl2anc 581 . . . . . 6 (𝜑 → (𝑁𝑌) ∈ ℝ)
80 msxms 22629 . . . . . . . 8 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
8163, 80syl 17 . . . . . . 7 (𝜑𝐹 ∈ ∞MetSp)
8213, 64xmsge0 22638 . . . . . . 7 ((𝐹 ∈ ∞MetSp ∧ 𝐵𝐾𝐶𝐾) → 0 ≤ (𝐵𝐸𝐶))
8381, 8, 16, 82syl3anc 1496 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝐸𝐶))
8479, 69resubcld 10782 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ∈ ℝ)
85 eqid 2825 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
8610, 67, 85nm2dif 22799 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑋𝑉) → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
873, 17, 9, 86syl3anc 1496 . . . . . . . . 9 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
8867, 10, 85, 20ngpdsr 22779 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
893, 9, 17, 88syl3anc 1496 . . . . . . . . 9 (𝜑 → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
9087, 89breqtrrd 4901 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑋𝐷𝑌))
9144, 73, 56ltled 10504 . . . . . . . 8 (𝜑 → (𝑋𝐷𝑌) ≤ 𝑇)
9284, 44, 73, 90, 91letrd 10513 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇)
9379, 69, 73lesubadd2d 10951 . . . . . . 7 (𝜑 → (((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇)))
9492, 93mpbid 224 . . . . . 6 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇))
9579, 74, 66, 83, 94lemul2ad 11294 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
9677, 95eqbrtrrd 4897 . . . 4 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
97 nlmvscn.1 . . . . . 6 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
98 nlmvscn.u . . . . . 6 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
9997, 98syl6breq 4914 . . . . 5 (𝜑 → (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇)))
100 0red 10360 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
10110, 67nmge0 22791 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → 0 ≤ (𝑁𝑋))
1023, 9, 101syl2anc 581 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑋))
10369, 72ltaddrpd 12189 . . . . . . 7 (𝜑 → (𝑁𝑋) < ((𝑁𝑋) + 𝑇))
104100, 69, 74, 102, 103lelttrd 10514 . . . . . 6 (𝜑 → 0 < ((𝑁𝑋) + 𝑇))
105 ltmuldiv 11226 . . . . . 6 (((𝐵𝐸𝐶) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝑋) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝑋) + 𝑇))) → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10666, 46, 74, 104, 105syl112anc 1499 . . . . 5 (𝜑 → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10799, 106mpbird 249 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2))
10828, 75, 46, 96, 107lelttrd 10514 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) < (𝑅 / 2))
10926, 28, 31, 61, 108lt2halvesd 11606 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) < 𝑅)
11022, 29, 31, 33, 109lelttrd 10514 1 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166   class class class wbr 4873  cfv 6123  (class class class)co 6905  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257   < clt 10391  cle 10392  cmin 10585   / cdiv 11009  2c2 11406  +crp 12112  Basecbs 16222  Scalarcsca 16308   ·𝑠 cvsca 16309  distcds 16314  -gcsg 17778  LModclmod 19219  ∞MetSpcxms 22492  MetSpcms 22493  normcnm 22751  NrmGrpcngp 22752  NrmModcnlm 22755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-fz 12620  df-seq 13096  df-exp 13155  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-plusg 16318  df-mulr 16319  df-tset 16324  df-ple 16325  df-ds 16327  df-0g 16455  df-topgen 16457  df-xrs 16515  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mgp 18844  df-ur 18856  df-ring 18903  df-lmod 19221  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-xms 22495  df-ms 22496  df-nm 22757  df-ngp 22758  df-nrg 22760  df-nlm 22761
This theorem is referenced by:  nlmvscnlem1  22860
  Copyright terms: Public domain W3C validator