MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem2 Structured version   Visualization version   GIF version

Theorem nlmvscnlem2 24706
Description: Lemma for nlmvscn 24708. Compare this proof with the similar elementary proof mulcn2 15632 for continuity of multiplication on . (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.v 𝑉 = (Base‘𝑊)
nlmvscn.k 𝐾 = (Base‘𝐹)
nlmvscn.d 𝐷 = (dist‘𝑊)
nlmvscn.e 𝐸 = (dist‘𝐹)
nlmvscn.n 𝑁 = (norm‘𝑊)
nlmvscn.a 𝐴 = (norm‘𝐹)
nlmvscn.s · = ( ·𝑠𝑊)
nlmvscn.t 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
nlmvscn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
nlmvscn.w (𝜑𝑊 ∈ NrmMod)
nlmvscn.r (𝜑𝑅 ∈ ℝ+)
nlmvscn.b (𝜑𝐵𝐾)
nlmvscn.x (𝜑𝑋𝑉)
nlmvscn.c (𝜑𝐶𝐾)
nlmvscn.y (𝜑𝑌𝑉)
nlmvscn.1 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
nlmvscn.2 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
Assertion
Ref Expression
nlmvscnlem2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)

Proof of Theorem nlmvscnlem2
StepHypRef Expression
1 nlmvscn.w . . . . 5 (𝜑𝑊 ∈ NrmMod)
2 nlmngp 24698 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ NrmGrp)
4 ngpms 24613 . . . 4 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
53, 4syl 17 . . 3 (𝜑𝑊 ∈ MetSp)
6 nlmlmod 24699 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
71, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 nlmvscn.b . . . 4 (𝜑𝐵𝐾)
9 nlmvscn.x . . . 4 (𝜑𝑋𝑉)
10 nlmvscn.v . . . . 5 𝑉 = (Base‘𝑊)
11 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
12 nlmvscn.s . . . . 5 · = ( ·𝑠𝑊)
13 nlmvscn.k . . . . 5 𝐾 = (Base‘𝐹)
1410, 11, 12, 13lmodvscl 20876 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
157, 8, 9, 14syl3anc 1373 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
16 nlmvscn.c . . . 4 (𝜑𝐶𝐾)
17 nlmvscn.y . . . 4 (𝜑𝑌𝑉)
1810, 11, 12, 13lmodvscl 20876 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑌𝑉) → (𝐶 · 𝑌) ∈ 𝑉)
197, 16, 17, 18syl3anc 1373 . . 3 (𝜑 → (𝐶 · 𝑌) ∈ 𝑉)
20 nlmvscn.d . . . 4 𝐷 = (dist‘𝑊)
2110, 20mscl 24471 . . 3 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
225, 15, 19, 21syl3anc 1373 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2310, 11, 12, 13lmodvscl 20876 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑌𝑉) → (𝐵 · 𝑌) ∈ 𝑉)
247, 8, 17, 23syl3anc 1373 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ 𝑉)
2510, 20mscl 24471 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
265, 15, 24, 25syl3anc 1373 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
2710, 20mscl 24471 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑌) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
285, 24, 19, 27syl3anc 1373 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2926, 28readdcld 11290 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) ∈ ℝ)
30 nlmvscn.r . . 3 (𝜑𝑅 ∈ ℝ+)
3130rpred 13077 . 2 (𝜑𝑅 ∈ ℝ)
3210, 20mstri 24479 . . 3 ((𝑊 ∈ MetSp ∧ ((𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉)) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
335, 15, 19, 24, 32syl13anc 1374 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
3411nlmngp2 24701 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
351, 34syl 17 . . . . . . . 8 (𝜑𝐹 ∈ NrmGrp)
36 nlmvscn.a . . . . . . . . 9 𝐴 = (norm‘𝐹)
3713, 36nmcl 24629 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → (𝐴𝐵) ∈ ℝ)
3835, 8, 37syl2anc 584 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℝ)
3913, 36nmge0 24630 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → 0 ≤ (𝐴𝐵))
4035, 8, 39syl2anc 584 . . . . . . 7 (𝜑 → 0 ≤ (𝐴𝐵))
4138, 40ge0p1rpd 13107 . . . . . 6 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ+)
4241rpred 13077 . . . . 5 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ)
4310, 20mscl 24471 . . . . . 6 ((𝑊 ∈ MetSp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) ∈ ℝ)
445, 9, 17, 43syl3anc 1373 . . . . 5 (𝜑 → (𝑋𝐷𝑌) ∈ ℝ)
4542, 44remulcld 11291 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) ∈ ℝ)
4631rehalfcld 12513 . . . 4 (𝜑 → (𝑅 / 2) ∈ ℝ)
4710, 12, 11, 13, 20, 36nlmdsdi 24702 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝑋𝑉𝑌𝑉)) → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
481, 8, 9, 17, 47syl13anc 1374 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
49 msxms 24464 . . . . . . . 8 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
505, 49syl 17 . . . . . . 7 (𝜑𝑊 ∈ ∞MetSp)
5110, 20xmsge0 24473 . . . . . . 7 ((𝑊 ∈ ∞MetSp ∧ 𝑋𝑉𝑌𝑉) → 0 ≤ (𝑋𝐷𝑌))
5250, 9, 17, 51syl3anc 1373 . . . . . 6 (𝜑 → 0 ≤ (𝑋𝐷𝑌))
5338lep1d 12199 . . . . . 6 (𝜑 → (𝐴𝐵) ≤ ((𝐴𝐵) + 1))
5438, 42, 44, 52, 53lemul1ad 12207 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
5548, 54eqbrtrrd 5167 . . . 4 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
56 nlmvscn.2 . . . . . 6 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
57 nlmvscn.t . . . . . 6 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
5856, 57breqtrdi 5184 . . . . 5 (𝜑 → (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1)))
5944, 46, 41ltmuldiv2d 13125 . . . . 5 (𝜑 → ((((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2) ↔ (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1))))
6058, 59mpbird 257 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2))
6126, 45, 46, 55, 60lelttrd 11419 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) < (𝑅 / 2))
62 ngpms 24613 . . . . . . 7 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
6335, 62syl 17 . . . . . 6 (𝜑𝐹 ∈ MetSp)
64 nlmvscn.e . . . . . . 7 𝐸 = (dist‘𝐹)
6513, 64mscl 24471 . . . . . 6 ((𝐹 ∈ MetSp ∧ 𝐵𝐾𝐶𝐾) → (𝐵𝐸𝐶) ∈ ℝ)
6663, 8, 16, 65syl3anc 1373 . . . . 5 (𝜑 → (𝐵𝐸𝐶) ∈ ℝ)
67 nlmvscn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
6810, 67nmcl 24629 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ ℝ)
693, 9, 68syl2anc 584 . . . . . 6 (𝜑 → (𝑁𝑋) ∈ ℝ)
7030rphalfcld 13089 . . . . . . . . 9 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7170, 41rpdivcld 13094 . . . . . . . 8 (𝜑 → ((𝑅 / 2) / ((𝐴𝐵) + 1)) ∈ ℝ+)
7257, 71eqeltrid 2845 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
7372rpred 13077 . . . . . 6 (𝜑𝑇 ∈ ℝ)
7469, 73readdcld 11290 . . . . 5 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ)
7566, 74remulcld 11291 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) ∈ ℝ)
7610, 12, 11, 13, 20, 67, 64nlmdsdir 24703 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝐶𝐾𝑌𝑉)) → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
771, 8, 16, 17, 76syl13anc 1374 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
7810, 67nmcl 24629 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
793, 17, 78syl2anc 584 . . . . . 6 (𝜑 → (𝑁𝑌) ∈ ℝ)
80 msxms 24464 . . . . . . . 8 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
8163, 80syl 17 . . . . . . 7 (𝜑𝐹 ∈ ∞MetSp)
8213, 64xmsge0 24473 . . . . . . 7 ((𝐹 ∈ ∞MetSp ∧ 𝐵𝐾𝐶𝐾) → 0 ≤ (𝐵𝐸𝐶))
8381, 8, 16, 82syl3anc 1373 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝐸𝐶))
8479, 69resubcld 11691 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ∈ ℝ)
85 eqid 2737 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
8610, 67, 85nm2dif 24638 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑋𝑉) → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
873, 17, 9, 86syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
8867, 10, 85, 20ngpdsr 24618 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
893, 9, 17, 88syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
9087, 89breqtrrd 5171 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑋𝐷𝑌))
9144, 73, 56ltled 11409 . . . . . . . 8 (𝜑 → (𝑋𝐷𝑌) ≤ 𝑇)
9284, 44, 73, 90, 91letrd 11418 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇)
9379, 69, 73lesubadd2d 11862 . . . . . . 7 (𝜑 → (((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇)))
9492, 93mpbid 232 . . . . . 6 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇))
9579, 74, 66, 83, 94lemul2ad 12208 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
9677, 95eqbrtrrd 5167 . . . 4 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
97 nlmvscn.1 . . . . . 6 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
98 nlmvscn.u . . . . . 6 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
9997, 98breqtrdi 5184 . . . . 5 (𝜑 → (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇)))
100 0red 11264 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
10110, 67nmge0 24630 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → 0 ≤ (𝑁𝑋))
1023, 9, 101syl2anc 584 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑋))
10369, 72ltaddrpd 13110 . . . . . . 7 (𝜑 → (𝑁𝑋) < ((𝑁𝑋) + 𝑇))
104100, 69, 74, 102, 103lelttrd 11419 . . . . . 6 (𝜑 → 0 < ((𝑁𝑋) + 𝑇))
105 ltmuldiv 12141 . . . . . 6 (((𝐵𝐸𝐶) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝑋) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝑋) + 𝑇))) → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10666, 46, 74, 104, 105syl112anc 1376 . . . . 5 (𝜑 → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10799, 106mpbird 257 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2))
10828, 75, 46, 96, 107lelttrd 11419 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) < (𝑅 / 2))
10926, 28, 31, 61, 108lt2halvesd 12514 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) < 𝑅)
11022, 29, 31, 33, 109lelttrd 11419 1 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  distcds 17306  -gcsg 18953  LModclmod 20858  ∞MetSpcxms 24327  MetSpcms 24328  normcnm 24589  NrmGrpcngp 24590  NrmModcnlm 24593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17486  df-topgen 17488  df-xrs 17547  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-lmod 20860  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-xms 24330  df-ms 24331  df-nm 24595  df-ngp 24596  df-nrg 24598  df-nlm 24599
This theorem is referenced by:  nlmvscnlem1  24707
  Copyright terms: Public domain W3C validator