MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem2 Structured version   Visualization version   GIF version

Theorem nlmvscnlem2 24573
Description: Lemma for nlmvscn 24575. Compare this proof with the similar elementary proof mulcn2 15562 for continuity of multiplication on . (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.v 𝑉 = (Base‘𝑊)
nlmvscn.k 𝐾 = (Base‘𝐹)
nlmvscn.d 𝐷 = (dist‘𝑊)
nlmvscn.e 𝐸 = (dist‘𝐹)
nlmvscn.n 𝑁 = (norm‘𝑊)
nlmvscn.a 𝐴 = (norm‘𝐹)
nlmvscn.s · = ( ·𝑠𝑊)
nlmvscn.t 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
nlmvscn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
nlmvscn.w (𝜑𝑊 ∈ NrmMod)
nlmvscn.r (𝜑𝑅 ∈ ℝ+)
nlmvscn.b (𝜑𝐵𝐾)
nlmvscn.x (𝜑𝑋𝑉)
nlmvscn.c (𝜑𝐶𝐾)
nlmvscn.y (𝜑𝑌𝑉)
nlmvscn.1 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
nlmvscn.2 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
Assertion
Ref Expression
nlmvscnlem2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)

Proof of Theorem nlmvscnlem2
StepHypRef Expression
1 nlmvscn.w . . . . 5 (𝜑𝑊 ∈ NrmMod)
2 nlmngp 24565 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ NrmGrp)
4 ngpms 24488 . . . 4 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
53, 4syl 17 . . 3 (𝜑𝑊 ∈ MetSp)
6 nlmlmod 24566 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
71, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 nlmvscn.b . . . 4 (𝜑𝐵𝐾)
9 nlmvscn.x . . . 4 (𝜑𝑋𝑉)
10 nlmvscn.v . . . . 5 𝑉 = (Base‘𝑊)
11 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
12 nlmvscn.s . . . . 5 · = ( ·𝑠𝑊)
13 nlmvscn.k . . . . 5 𝐾 = (Base‘𝐹)
1410, 11, 12, 13lmodvscl 20784 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
157, 8, 9, 14syl3anc 1373 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
16 nlmvscn.c . . . 4 (𝜑𝐶𝐾)
17 nlmvscn.y . . . 4 (𝜑𝑌𝑉)
1810, 11, 12, 13lmodvscl 20784 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑌𝑉) → (𝐶 · 𝑌) ∈ 𝑉)
197, 16, 17, 18syl3anc 1373 . . 3 (𝜑 → (𝐶 · 𝑌) ∈ 𝑉)
20 nlmvscn.d . . . 4 𝐷 = (dist‘𝑊)
2110, 20mscl 24349 . . 3 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
225, 15, 19, 21syl3anc 1373 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2310, 11, 12, 13lmodvscl 20784 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑌𝑉) → (𝐵 · 𝑌) ∈ 𝑉)
247, 8, 17, 23syl3anc 1373 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ 𝑉)
2510, 20mscl 24349 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
265, 15, 24, 25syl3anc 1373 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
2710, 20mscl 24349 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑌) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
285, 24, 19, 27syl3anc 1373 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2926, 28readdcld 11203 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) ∈ ℝ)
30 nlmvscn.r . . 3 (𝜑𝑅 ∈ ℝ+)
3130rpred 12995 . 2 (𝜑𝑅 ∈ ℝ)
3210, 20mstri 24357 . . 3 ((𝑊 ∈ MetSp ∧ ((𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉)) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
335, 15, 19, 24, 32syl13anc 1374 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
3411nlmngp2 24568 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
351, 34syl 17 . . . . . . . 8 (𝜑𝐹 ∈ NrmGrp)
36 nlmvscn.a . . . . . . . . 9 𝐴 = (norm‘𝐹)
3713, 36nmcl 24504 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → (𝐴𝐵) ∈ ℝ)
3835, 8, 37syl2anc 584 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℝ)
3913, 36nmge0 24505 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → 0 ≤ (𝐴𝐵))
4035, 8, 39syl2anc 584 . . . . . . 7 (𝜑 → 0 ≤ (𝐴𝐵))
4138, 40ge0p1rpd 13025 . . . . . 6 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ+)
4241rpred 12995 . . . . 5 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ)
4310, 20mscl 24349 . . . . . 6 ((𝑊 ∈ MetSp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) ∈ ℝ)
445, 9, 17, 43syl3anc 1373 . . . . 5 (𝜑 → (𝑋𝐷𝑌) ∈ ℝ)
4542, 44remulcld 11204 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) ∈ ℝ)
4631rehalfcld 12429 . . . 4 (𝜑 → (𝑅 / 2) ∈ ℝ)
4710, 12, 11, 13, 20, 36nlmdsdi 24569 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝑋𝑉𝑌𝑉)) → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
481, 8, 9, 17, 47syl13anc 1374 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
49 msxms 24342 . . . . . . . 8 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
505, 49syl 17 . . . . . . 7 (𝜑𝑊 ∈ ∞MetSp)
5110, 20xmsge0 24351 . . . . . . 7 ((𝑊 ∈ ∞MetSp ∧ 𝑋𝑉𝑌𝑉) → 0 ≤ (𝑋𝐷𝑌))
5250, 9, 17, 51syl3anc 1373 . . . . . 6 (𝜑 → 0 ≤ (𝑋𝐷𝑌))
5338lep1d 12114 . . . . . 6 (𝜑 → (𝐴𝐵) ≤ ((𝐴𝐵) + 1))
5438, 42, 44, 52, 53lemul1ad 12122 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
5548, 54eqbrtrrd 5131 . . . 4 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
56 nlmvscn.2 . . . . . 6 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
57 nlmvscn.t . . . . . 6 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
5856, 57breqtrdi 5148 . . . . 5 (𝜑 → (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1)))
5944, 46, 41ltmuldiv2d 13043 . . . . 5 (𝜑 → ((((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2) ↔ (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1))))
6058, 59mpbird 257 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2))
6126, 45, 46, 55, 60lelttrd 11332 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) < (𝑅 / 2))
62 ngpms 24488 . . . . . . 7 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
6335, 62syl 17 . . . . . 6 (𝜑𝐹 ∈ MetSp)
64 nlmvscn.e . . . . . . 7 𝐸 = (dist‘𝐹)
6513, 64mscl 24349 . . . . . 6 ((𝐹 ∈ MetSp ∧ 𝐵𝐾𝐶𝐾) → (𝐵𝐸𝐶) ∈ ℝ)
6663, 8, 16, 65syl3anc 1373 . . . . 5 (𝜑 → (𝐵𝐸𝐶) ∈ ℝ)
67 nlmvscn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
6810, 67nmcl 24504 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ ℝ)
693, 9, 68syl2anc 584 . . . . . 6 (𝜑 → (𝑁𝑋) ∈ ℝ)
7030rphalfcld 13007 . . . . . . . . 9 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7170, 41rpdivcld 13012 . . . . . . . 8 (𝜑 → ((𝑅 / 2) / ((𝐴𝐵) + 1)) ∈ ℝ+)
7257, 71eqeltrid 2832 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
7372rpred 12995 . . . . . 6 (𝜑𝑇 ∈ ℝ)
7469, 73readdcld 11203 . . . . 5 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ)
7566, 74remulcld 11204 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) ∈ ℝ)
7610, 12, 11, 13, 20, 67, 64nlmdsdir 24570 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝐶𝐾𝑌𝑉)) → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
771, 8, 16, 17, 76syl13anc 1374 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
7810, 67nmcl 24504 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
793, 17, 78syl2anc 584 . . . . . 6 (𝜑 → (𝑁𝑌) ∈ ℝ)
80 msxms 24342 . . . . . . . 8 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
8163, 80syl 17 . . . . . . 7 (𝜑𝐹 ∈ ∞MetSp)
8213, 64xmsge0 24351 . . . . . . 7 ((𝐹 ∈ ∞MetSp ∧ 𝐵𝐾𝐶𝐾) → 0 ≤ (𝐵𝐸𝐶))
8381, 8, 16, 82syl3anc 1373 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝐸𝐶))
8479, 69resubcld 11606 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ∈ ℝ)
85 eqid 2729 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
8610, 67, 85nm2dif 24513 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑋𝑉) → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
873, 17, 9, 86syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
8867, 10, 85, 20ngpdsr 24493 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
893, 9, 17, 88syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
9087, 89breqtrrd 5135 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑋𝐷𝑌))
9144, 73, 56ltled 11322 . . . . . . . 8 (𝜑 → (𝑋𝐷𝑌) ≤ 𝑇)
9284, 44, 73, 90, 91letrd 11331 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇)
9379, 69, 73lesubadd2d 11777 . . . . . . 7 (𝜑 → (((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇)))
9492, 93mpbid 232 . . . . . 6 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇))
9579, 74, 66, 83, 94lemul2ad 12123 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
9677, 95eqbrtrrd 5131 . . . 4 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
97 nlmvscn.1 . . . . . 6 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
98 nlmvscn.u . . . . . 6 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
9997, 98breqtrdi 5148 . . . . 5 (𝜑 → (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇)))
100 0red 11177 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
10110, 67nmge0 24505 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → 0 ≤ (𝑁𝑋))
1023, 9, 101syl2anc 584 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑋))
10369, 72ltaddrpd 13028 . . . . . . 7 (𝜑 → (𝑁𝑋) < ((𝑁𝑋) + 𝑇))
104100, 69, 74, 102, 103lelttrd 11332 . . . . . 6 (𝜑 → 0 < ((𝑁𝑋) + 𝑇))
105 ltmuldiv 12056 . . . . . 6 (((𝐵𝐸𝐶) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝑋) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝑋) + 𝑇))) → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10666, 46, 74, 104, 105syl112anc 1376 . . . . 5 (𝜑 → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10799, 106mpbird 257 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2))
10828, 75, 46, 96, 107lelttrd 11332 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) < (𝑅 / 2))
10926, 28, 31, 61, 108lt2halvesd 12430 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) < 𝑅)
11022, 29, 31, 33, 109lelttrd 11332 1 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  distcds 17229  -gcsg 18867  LModclmod 20766  ∞MetSpcxms 24205  MetSpcms 24206  normcnm 24464  NrmGrpcngp 24465  NrmModcnlm 24468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-topgen 17406  df-xrs 17465  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-lmod 20768  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209  df-nm 24470  df-ngp 24471  df-nrg 24473  df-nlm 24474
This theorem is referenced by:  nlmvscnlem1  24574
  Copyright terms: Public domain W3C validator