MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem2 Structured version   Visualization version   GIF version

Theorem nlmvscnlem2 23291
Description: Lemma for nlmvscn 23293. Compare this proof with the similar elementary proof mulcn2 14944 for continuity of multiplication on . (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.v 𝑉 = (Base‘𝑊)
nlmvscn.k 𝐾 = (Base‘𝐹)
nlmvscn.d 𝐷 = (dist‘𝑊)
nlmvscn.e 𝐸 = (dist‘𝐹)
nlmvscn.n 𝑁 = (norm‘𝑊)
nlmvscn.a 𝐴 = (norm‘𝐹)
nlmvscn.s · = ( ·𝑠𝑊)
nlmvscn.t 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
nlmvscn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
nlmvscn.w (𝜑𝑊 ∈ NrmMod)
nlmvscn.r (𝜑𝑅 ∈ ℝ+)
nlmvscn.b (𝜑𝐵𝐾)
nlmvscn.x (𝜑𝑋𝑉)
nlmvscn.c (𝜑𝐶𝐾)
nlmvscn.y (𝜑𝑌𝑉)
nlmvscn.1 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
nlmvscn.2 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
Assertion
Ref Expression
nlmvscnlem2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)

Proof of Theorem nlmvscnlem2
StepHypRef Expression
1 nlmvscn.w . . . . 5 (𝜑𝑊 ∈ NrmMod)
2 nlmngp 23283 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ NrmGrp)
4 ngpms 23206 . . . 4 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
53, 4syl 17 . . 3 (𝜑𝑊 ∈ MetSp)
6 nlmlmod 23284 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
71, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 nlmvscn.b . . . 4 (𝜑𝐵𝐾)
9 nlmvscn.x . . . 4 (𝜑𝑋𝑉)
10 nlmvscn.v . . . . 5 𝑉 = (Base‘𝑊)
11 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
12 nlmvscn.s . . . . 5 · = ( ·𝑠𝑊)
13 nlmvscn.k . . . . 5 𝐾 = (Base‘𝐹)
1410, 11, 12, 13lmodvscl 19644 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
157, 8, 9, 14syl3anc 1368 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
16 nlmvscn.c . . . 4 (𝜑𝐶𝐾)
17 nlmvscn.y . . . 4 (𝜑𝑌𝑉)
1810, 11, 12, 13lmodvscl 19644 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑌𝑉) → (𝐶 · 𝑌) ∈ 𝑉)
197, 16, 17, 18syl3anc 1368 . . 3 (𝜑 → (𝐶 · 𝑌) ∈ 𝑉)
20 nlmvscn.d . . . 4 𝐷 = (dist‘𝑊)
2110, 20mscl 23068 . . 3 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
225, 15, 19, 21syl3anc 1368 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2310, 11, 12, 13lmodvscl 19644 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑌𝑉) → (𝐵 · 𝑌) ∈ 𝑉)
247, 8, 17, 23syl3anc 1368 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ 𝑉)
2510, 20mscl 23068 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
265, 15, 24, 25syl3anc 1368 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
2710, 20mscl 23068 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑌) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
285, 24, 19, 27syl3anc 1368 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2926, 28readdcld 10659 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) ∈ ℝ)
30 nlmvscn.r . . 3 (𝜑𝑅 ∈ ℝ+)
3130rpred 12419 . 2 (𝜑𝑅 ∈ ℝ)
3210, 20mstri 23076 . . 3 ((𝑊 ∈ MetSp ∧ ((𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉)) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
335, 15, 19, 24, 32syl13anc 1369 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
3411nlmngp2 23286 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
351, 34syl 17 . . . . . . . 8 (𝜑𝐹 ∈ NrmGrp)
36 nlmvscn.a . . . . . . . . 9 𝐴 = (norm‘𝐹)
3713, 36nmcl 23222 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → (𝐴𝐵) ∈ ℝ)
3835, 8, 37syl2anc 587 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℝ)
3913, 36nmge0 23223 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → 0 ≤ (𝐴𝐵))
4035, 8, 39syl2anc 587 . . . . . . 7 (𝜑 → 0 ≤ (𝐴𝐵))
4138, 40ge0p1rpd 12449 . . . . . 6 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ+)
4241rpred 12419 . . . . 5 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ)
4310, 20mscl 23068 . . . . . 6 ((𝑊 ∈ MetSp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) ∈ ℝ)
445, 9, 17, 43syl3anc 1368 . . . . 5 (𝜑 → (𝑋𝐷𝑌) ∈ ℝ)
4542, 44remulcld 10660 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) ∈ ℝ)
4631rehalfcld 11872 . . . 4 (𝜑 → (𝑅 / 2) ∈ ℝ)
4710, 12, 11, 13, 20, 36nlmdsdi 23287 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝑋𝑉𝑌𝑉)) → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
481, 8, 9, 17, 47syl13anc 1369 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
49 msxms 23061 . . . . . . . 8 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
505, 49syl 17 . . . . . . 7 (𝜑𝑊 ∈ ∞MetSp)
5110, 20xmsge0 23070 . . . . . . 7 ((𝑊 ∈ ∞MetSp ∧ 𝑋𝑉𝑌𝑉) → 0 ≤ (𝑋𝐷𝑌))
5250, 9, 17, 51syl3anc 1368 . . . . . 6 (𝜑 → 0 ≤ (𝑋𝐷𝑌))
5338lep1d 11560 . . . . . 6 (𝜑 → (𝐴𝐵) ≤ ((𝐴𝐵) + 1))
5438, 42, 44, 52, 53lemul1ad 11568 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
5548, 54eqbrtrrd 5054 . . . 4 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
56 nlmvscn.2 . . . . . 6 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
57 nlmvscn.t . . . . . 6 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
5856, 57breqtrdi 5071 . . . . 5 (𝜑 → (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1)))
5944, 46, 41ltmuldiv2d 12467 . . . . 5 (𝜑 → ((((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2) ↔ (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1))))
6058, 59mpbird 260 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2))
6126, 45, 46, 55, 60lelttrd 10787 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) < (𝑅 / 2))
62 ngpms 23206 . . . . . . 7 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
6335, 62syl 17 . . . . . 6 (𝜑𝐹 ∈ MetSp)
64 nlmvscn.e . . . . . . 7 𝐸 = (dist‘𝐹)
6513, 64mscl 23068 . . . . . 6 ((𝐹 ∈ MetSp ∧ 𝐵𝐾𝐶𝐾) → (𝐵𝐸𝐶) ∈ ℝ)
6663, 8, 16, 65syl3anc 1368 . . . . 5 (𝜑 → (𝐵𝐸𝐶) ∈ ℝ)
67 nlmvscn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
6810, 67nmcl 23222 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ ℝ)
693, 9, 68syl2anc 587 . . . . . 6 (𝜑 → (𝑁𝑋) ∈ ℝ)
7030rphalfcld 12431 . . . . . . . . 9 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7170, 41rpdivcld 12436 . . . . . . . 8 (𝜑 → ((𝑅 / 2) / ((𝐴𝐵) + 1)) ∈ ℝ+)
7257, 71eqeltrid 2894 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
7372rpred 12419 . . . . . 6 (𝜑𝑇 ∈ ℝ)
7469, 73readdcld 10659 . . . . 5 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ)
7566, 74remulcld 10660 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) ∈ ℝ)
7610, 12, 11, 13, 20, 67, 64nlmdsdir 23288 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝐶𝐾𝑌𝑉)) → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
771, 8, 16, 17, 76syl13anc 1369 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
7810, 67nmcl 23222 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
793, 17, 78syl2anc 587 . . . . . 6 (𝜑 → (𝑁𝑌) ∈ ℝ)
80 msxms 23061 . . . . . . . 8 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
8163, 80syl 17 . . . . . . 7 (𝜑𝐹 ∈ ∞MetSp)
8213, 64xmsge0 23070 . . . . . . 7 ((𝐹 ∈ ∞MetSp ∧ 𝐵𝐾𝐶𝐾) → 0 ≤ (𝐵𝐸𝐶))
8381, 8, 16, 82syl3anc 1368 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝐸𝐶))
8479, 69resubcld 11057 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ∈ ℝ)
85 eqid 2798 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
8610, 67, 85nm2dif 23231 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑋𝑉) → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
873, 17, 9, 86syl3anc 1368 . . . . . . . . 9 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
8867, 10, 85, 20ngpdsr 23211 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
893, 9, 17, 88syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
9087, 89breqtrrd 5058 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑋𝐷𝑌))
9144, 73, 56ltled 10777 . . . . . . . 8 (𝜑 → (𝑋𝐷𝑌) ≤ 𝑇)
9284, 44, 73, 90, 91letrd 10786 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇)
9379, 69, 73lesubadd2d 11228 . . . . . . 7 (𝜑 → (((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇)))
9492, 93mpbid 235 . . . . . 6 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇))
9579, 74, 66, 83, 94lemul2ad 11569 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
9677, 95eqbrtrrd 5054 . . . 4 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
97 nlmvscn.1 . . . . . 6 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
98 nlmvscn.u . . . . . 6 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
9997, 98breqtrdi 5071 . . . . 5 (𝜑 → (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇)))
100 0red 10633 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
10110, 67nmge0 23223 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → 0 ≤ (𝑁𝑋))
1023, 9, 101syl2anc 587 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑋))
10369, 72ltaddrpd 12452 . . . . . . 7 (𝜑 → (𝑁𝑋) < ((𝑁𝑋) + 𝑇))
104100, 69, 74, 102, 103lelttrd 10787 . . . . . 6 (𝜑 → 0 < ((𝑁𝑋) + 𝑇))
105 ltmuldiv 11502 . . . . . 6 (((𝐵𝐸𝐶) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝑋) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝑋) + 𝑇))) → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10666, 46, 74, 104, 105syl112anc 1371 . . . . 5 (𝜑 → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10799, 106mpbird 260 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2))
10828, 75, 46, 96, 107lelttrd 10787 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) < (𝑅 / 2))
10926, 28, 31, 61, 108lt2halvesd 11873 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) < 𝑅)
11022, 29, 31, 33, 109lelttrd 10787 1 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  distcds 16566  -gcsg 18097  LModclmod 19627  ∞MetSpcxms 22924  MetSpcms 22925  normcnm 23183  NrmGrpcngp 23184  NrmModcnlm 23187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-tset 16576  df-ple 16577  df-ds 16579  df-0g 16707  df-topgen 16709  df-xrs 16767  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-nrg 23192  df-nlm 23193
This theorem is referenced by:  nlmvscnlem1  23292
  Copyright terms: Public domain W3C validator