MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem2 Structured version   Visualization version   GIF version

Theorem nlmvscnlem2 23294
Description: Lemma for nlmvscn 23296. Compare this proof with the similar elementary proof mulcn2 14952 for continuity of multiplication on . (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.v 𝑉 = (Base‘𝑊)
nlmvscn.k 𝐾 = (Base‘𝐹)
nlmvscn.d 𝐷 = (dist‘𝑊)
nlmvscn.e 𝐸 = (dist‘𝐹)
nlmvscn.n 𝑁 = (norm‘𝑊)
nlmvscn.a 𝐴 = (norm‘𝐹)
nlmvscn.s · = ( ·𝑠𝑊)
nlmvscn.t 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
nlmvscn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
nlmvscn.w (𝜑𝑊 ∈ NrmMod)
nlmvscn.r (𝜑𝑅 ∈ ℝ+)
nlmvscn.b (𝜑𝐵𝐾)
nlmvscn.x (𝜑𝑋𝑉)
nlmvscn.c (𝜑𝐶𝐾)
nlmvscn.y (𝜑𝑌𝑉)
nlmvscn.1 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
nlmvscn.2 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
Assertion
Ref Expression
nlmvscnlem2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)

Proof of Theorem nlmvscnlem2
StepHypRef Expression
1 nlmvscn.w . . . . 5 (𝜑𝑊 ∈ NrmMod)
2 nlmngp 23286 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ NrmGrp)
4 ngpms 23209 . . . 4 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
53, 4syl 17 . . 3 (𝜑𝑊 ∈ MetSp)
6 nlmlmod 23287 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
71, 6syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
8 nlmvscn.b . . . 4 (𝜑𝐵𝐾)
9 nlmvscn.x . . . 4 (𝜑𝑋𝑉)
10 nlmvscn.v . . . . 5 𝑉 = (Base‘𝑊)
11 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
12 nlmvscn.s . . . . 5 · = ( ·𝑠𝑊)
13 nlmvscn.k . . . . 5 𝐾 = (Base‘𝐹)
1410, 11, 12, 13lmodvscl 19651 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
157, 8, 9, 14syl3anc 1367 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
16 nlmvscn.c . . . 4 (𝜑𝐶𝐾)
17 nlmvscn.y . . . 4 (𝜑𝑌𝑉)
1810, 11, 12, 13lmodvscl 19651 . . . 4 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑌𝑉) → (𝐶 · 𝑌) ∈ 𝑉)
197, 16, 17, 18syl3anc 1367 . . 3 (𝜑 → (𝐶 · 𝑌) ∈ 𝑉)
20 nlmvscn.d . . . 4 𝐷 = (dist‘𝑊)
2110, 20mscl 23071 . . 3 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
225, 15, 19, 21syl3anc 1367 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2310, 11, 12, 13lmodvscl 19651 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑌𝑉) → (𝐵 · 𝑌) ∈ 𝑉)
247, 8, 17, 23syl3anc 1367 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ 𝑉)
2510, 20mscl 23071 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
265, 15, 24, 25syl3anc 1367 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ∈ ℝ)
2710, 20mscl 23071 . . . 4 ((𝑊 ∈ MetSp ∧ (𝐵 · 𝑌) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉) → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
285, 24, 19, 27syl3anc 1367 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ∈ ℝ)
2926, 28readdcld 10670 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) ∈ ℝ)
30 nlmvscn.r . . 3 (𝜑𝑅 ∈ ℝ+)
3130rpred 12432 . 2 (𝜑𝑅 ∈ ℝ)
3210, 20mstri 23079 . . 3 ((𝑊 ∈ MetSp ∧ ((𝐵 · 𝑋) ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉)) → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
335, 15, 19, 24, 32syl13anc 1368 . 2 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) ≤ (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))))
3411nlmngp2 23289 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
351, 34syl 17 . . . . . . . 8 (𝜑𝐹 ∈ NrmGrp)
36 nlmvscn.a . . . . . . . . 9 𝐴 = (norm‘𝐹)
3713, 36nmcl 23225 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → (𝐴𝐵) ∈ ℝ)
3835, 8, 37syl2anc 586 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ ℝ)
3913, 36nmge0 23226 . . . . . . . 8 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → 0 ≤ (𝐴𝐵))
4035, 8, 39syl2anc 586 . . . . . . 7 (𝜑 → 0 ≤ (𝐴𝐵))
4138, 40ge0p1rpd 12462 . . . . . 6 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ+)
4241rpred 12432 . . . . 5 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ)
4310, 20mscl 23071 . . . . . 6 ((𝑊 ∈ MetSp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) ∈ ℝ)
445, 9, 17, 43syl3anc 1367 . . . . 5 (𝜑 → (𝑋𝐷𝑌) ∈ ℝ)
4542, 44remulcld 10671 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) ∈ ℝ)
4631rehalfcld 11885 . . . 4 (𝜑 → (𝑅 / 2) ∈ ℝ)
4710, 12, 11, 13, 20, 36nlmdsdi 23290 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝑋𝑉𝑌𝑉)) → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
481, 8, 9, 17, 47syl13anc 1368 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) = ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)))
49 msxms 23064 . . . . . . . 8 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
505, 49syl 17 . . . . . . 7 (𝜑𝑊 ∈ ∞MetSp)
5110, 20xmsge0 23073 . . . . . . 7 ((𝑊 ∈ ∞MetSp ∧ 𝑋𝑉𝑌𝑉) → 0 ≤ (𝑋𝐷𝑌))
5250, 9, 17, 51syl3anc 1367 . . . . . 6 (𝜑 → 0 ≤ (𝑋𝐷𝑌))
5338lep1d 11571 . . . . . 6 (𝜑 → (𝐴𝐵) ≤ ((𝐴𝐵) + 1))
5438, 42, 44, 52, 53lemul1ad 11579 . . . . 5 (𝜑 → ((𝐴𝐵) · (𝑋𝐷𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
5548, 54eqbrtrrd 5090 . . . 4 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) ≤ (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)))
56 nlmvscn.2 . . . . . 6 (𝜑 → (𝑋𝐷𝑌) < 𝑇)
57 nlmvscn.t . . . . . 6 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
5856, 57breqtrdi 5107 . . . . 5 (𝜑 → (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1)))
5944, 46, 41ltmuldiv2d 12480 . . . . 5 (𝜑 → ((((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2) ↔ (𝑋𝐷𝑌) < ((𝑅 / 2) / ((𝐴𝐵) + 1))))
6058, 59mpbird 259 . . . 4 (𝜑 → (((𝐴𝐵) + 1) · (𝑋𝐷𝑌)) < (𝑅 / 2))
6126, 45, 46, 55, 60lelttrd 10798 . . 3 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) < (𝑅 / 2))
62 ngpms 23209 . . . . . . 7 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
6335, 62syl 17 . . . . . 6 (𝜑𝐹 ∈ MetSp)
64 nlmvscn.e . . . . . . 7 𝐸 = (dist‘𝐹)
6513, 64mscl 23071 . . . . . 6 ((𝐹 ∈ MetSp ∧ 𝐵𝐾𝐶𝐾) → (𝐵𝐸𝐶) ∈ ℝ)
6663, 8, 16, 65syl3anc 1367 . . . . 5 (𝜑 → (𝐵𝐸𝐶) ∈ ℝ)
67 nlmvscn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
6810, 67nmcl 23225 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ ℝ)
693, 9, 68syl2anc 586 . . . . . 6 (𝜑 → (𝑁𝑋) ∈ ℝ)
7030rphalfcld 12444 . . . . . . . . 9 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7170, 41rpdivcld 12449 . . . . . . . 8 (𝜑 → ((𝑅 / 2) / ((𝐴𝐵) + 1)) ∈ ℝ+)
7257, 71eqeltrid 2917 . . . . . . 7 (𝜑𝑇 ∈ ℝ+)
7372rpred 12432 . . . . . 6 (𝜑𝑇 ∈ ℝ)
7469, 73readdcld 10670 . . . . 5 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ)
7566, 74remulcld 10671 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) ∈ ℝ)
7610, 12, 11, 13, 20, 67, 64nlmdsdir 23291 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝐵𝐾𝐶𝐾𝑌𝑉)) → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
771, 8, 16, 17, 76syl13anc 1368 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) = ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)))
7810, 67nmcl 23225 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
793, 17, 78syl2anc 586 . . . . . 6 (𝜑 → (𝑁𝑌) ∈ ℝ)
80 msxms 23064 . . . . . . . 8 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
8163, 80syl 17 . . . . . . 7 (𝜑𝐹 ∈ ∞MetSp)
8213, 64xmsge0 23073 . . . . . . 7 ((𝐹 ∈ ∞MetSp ∧ 𝐵𝐾𝐶𝐾) → 0 ≤ (𝐵𝐸𝐶))
8381, 8, 16, 82syl3anc 1367 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝐸𝐶))
8479, 69resubcld 11068 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ∈ ℝ)
85 eqid 2821 . . . . . . . . . . 11 (-g𝑊) = (-g𝑊)
8610, 67, 85nm2dif 23234 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝑋𝑉) → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
873, 17, 9, 86syl3anc 1367 . . . . . . . . 9 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑁‘(𝑌(-g𝑊)𝑋)))
8867, 10, 85, 20ngpdsr 23214 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉𝑌𝑉) → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
893, 9, 17, 88syl3anc 1367 . . . . . . . . 9 (𝜑 → (𝑋𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝑋)))
9087, 89breqtrrd 5094 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ (𝑋𝐷𝑌))
9144, 73, 56ltled 10788 . . . . . . . 8 (𝜑 → (𝑋𝐷𝑌) ≤ 𝑇)
9284, 44, 73, 90, 91letrd 10797 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇)
9379, 69, 73lesubadd2d 11239 . . . . . . 7 (𝜑 → (((𝑁𝑌) − (𝑁𝑋)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇)))
9492, 93mpbid 234 . . . . . 6 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝑋) + 𝑇))
9579, 74, 66, 83, 94lemul2ad 11580 . . . . 5 (𝜑 → ((𝐵𝐸𝐶) · (𝑁𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
9677, 95eqbrtrrd 5090 . . . 4 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) ≤ ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)))
97 nlmvscn.1 . . . . . 6 (𝜑 → (𝐵𝐸𝐶) < 𝑈)
98 nlmvscn.u . . . . . 6 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
9997, 98breqtrdi 5107 . . . . 5 (𝜑 → (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇)))
100 0red 10644 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
10110, 67nmge0 23226 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → 0 ≤ (𝑁𝑋))
1023, 9, 101syl2anc 586 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑋))
10369, 72ltaddrpd 12465 . . . . . . 7 (𝜑 → (𝑁𝑋) < ((𝑁𝑋) + 𝑇))
104100, 69, 74, 102, 103lelttrd 10798 . . . . . 6 (𝜑 → 0 < ((𝑁𝑋) + 𝑇))
105 ltmuldiv 11513 . . . . . 6 (((𝐵𝐸𝐶) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝑋) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝑋) + 𝑇))) → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10666, 46, 74, 104, 105syl112anc 1370 . . . . 5 (𝜑 → (((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2) ↔ (𝐵𝐸𝐶) < ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))))
10799, 106mpbird 259 . . . 4 (𝜑 → ((𝐵𝐸𝐶) · ((𝑁𝑋) + 𝑇)) < (𝑅 / 2))
10828, 75, 46, 96, 107lelttrd 10798 . . 3 (𝜑 → ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌)) < (𝑅 / 2))
10926, 28, 31, 61, 108lt2halvesd 11886 . 2 (𝜑 → (((𝐵 · 𝑋)𝐷(𝐵 · 𝑌)) + ((𝐵 · 𝑌)𝐷(𝐶 · 𝑌))) < 𝑅)
11022, 29, 31, 33, 109lelttrd 10798 1 (𝜑 → ((𝐵 · 𝑋)𝐷(𝐶 · 𝑌)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  2c2 11693  +crp 12390  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  distcds 16574  -gcsg 18105  LModclmod 19634  ∞MetSpcxms 22927  MetSpcms 22928  normcnm 23186  NrmGrpcngp 23187  NrmModcnlm 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-mulr 16579  df-tset 16584  df-ple 16585  df-ds 16587  df-0g 16715  df-topgen 16717  df-xrs 16775  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196
This theorem is referenced by:  nlmvscnlem1  23295
  Copyright terms: Public domain W3C validator