MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem1 Structured version   Visualization version   GIF version

Theorem nlmvscnlem1 24623
Description: Lemma for nlmvscn 24624. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.v 𝑉 = (Base‘𝑊)
nlmvscn.k 𝐾 = (Base‘𝐹)
nlmvscn.d 𝐷 = (dist‘𝑊)
nlmvscn.e 𝐸 = (dist‘𝐹)
nlmvscn.n 𝑁 = (norm‘𝑊)
nlmvscn.a 𝐴 = (norm‘𝐹)
nlmvscn.s · = ( ·𝑠𝑊)
nlmvscn.t 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
nlmvscn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
nlmvscn.w (𝜑𝑊 ∈ NrmMod)
nlmvscn.r (𝜑𝑅 ∈ ℝ+)
nlmvscn.b (𝜑𝐵𝐾)
nlmvscn.x (𝜑𝑋𝑉)
Assertion
Ref Expression
nlmvscnlem1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
Distinct variable groups:   𝐵,𝑟   𝐷,𝑟   𝐸,𝑟   𝑥,𝑦,𝜑   𝑥,𝑟,𝑦,𝑇   𝑈,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝐾,𝑟,𝑦   𝑅,𝑟   𝑉,𝑟   𝑊,𝑟,𝑥,𝑦   · ,𝑟,𝑥,𝑦   𝑋,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑥,𝑦,𝑟)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐾(𝑥)   𝑁(𝑥,𝑦,𝑟)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem nlmvscnlem1
StepHypRef Expression
1 nlmvscn.t . . . 4 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
2 nlmvscn.r . . . . . 6 (𝜑𝑅 ∈ ℝ+)
32rphalfcld 13061 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ+)
4 nlmvscn.w . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
5 nlmvscn.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
65nlmngp2 24617 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
74, 6syl 17 . . . . . . 7 (𝜑𝐹 ∈ NrmGrp)
8 nlmvscn.b . . . . . . 7 (𝜑𝐵𝐾)
9 nlmvscn.k . . . . . . . 8 𝐾 = (Base‘𝐹)
10 nlmvscn.a . . . . . . . 8 𝐴 = (norm‘𝐹)
119, 10nmcl 24553 . . . . . . 7 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → (𝐴𝐵) ∈ ℝ)
127, 8, 11syl2anc 584 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ ℝ)
139, 10nmge0 24554 . . . . . . 7 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → 0 ≤ (𝐴𝐵))
147, 8, 13syl2anc 584 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝐵))
1512, 14ge0p1rpd 13079 . . . . 5 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ+)
163, 15rpdivcld 13066 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝐴𝐵) + 1)) ∈ ℝ+)
171, 16eqeltrid 2838 . . 3 (𝜑𝑇 ∈ ℝ+)
18 nlmvscn.u . . . 4 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
19 nlmngp 24614 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
204, 19syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmGrp)
21 nlmvscn.x . . . . . . . 8 (𝜑𝑋𝑉)
22 nlmvscn.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
23 nlmvscn.n . . . . . . . . 9 𝑁 = (norm‘𝑊)
2422, 23nmcl 24553 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ ℝ)
2520, 21, 24syl2anc 584 . . . . . . 7 (𝜑 → (𝑁𝑋) ∈ ℝ)
2617rpred 13049 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2725, 26readdcld 11262 . . . . . 6 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ)
28 0red 11236 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
2922, 23nmge0 24554 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → 0 ≤ (𝑁𝑋))
3020, 21, 29syl2anc 584 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑋))
3125, 17ltaddrpd 13082 . . . . . . 7 (𝜑 → (𝑁𝑋) < ((𝑁𝑋) + 𝑇))
3228, 25, 27, 30, 31lelttrd 11391 . . . . . 6 (𝜑 → 0 < ((𝑁𝑋) + 𝑇))
3327, 32elrpd 13046 . . . . 5 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ+)
343, 33rpdivcld 13066 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝑋) + 𝑇)) ∈ ℝ+)
3518, 34eqeltrid 2838 . . 3 (𝜑𝑈 ∈ ℝ+)
3617, 35ifcld 4547 . 2 (𝜑 → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
37 nlmvscn.d . . . . 5 𝐷 = (dist‘𝑊)
38 nlmvscn.e . . . . 5 𝐸 = (dist‘𝐹)
39 nlmvscn.s . . . . 5 · = ( ·𝑠𝑊)
404adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmMod)
412adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑅 ∈ ℝ+)
428adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐵𝐾)
4321adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑋𝑉)
44 simprll 778 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑥𝐾)
45 simprlr 779 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑦𝑉)
467adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐹 ∈ NrmGrp)
47 ngpms 24537 . . . . . . . 8 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
4846, 47syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐹 ∈ MetSp)
499, 38mscl 24398 . . . . . . 7 ((𝐹 ∈ MetSp ∧ 𝐵𝐾𝑥𝐾) → (𝐵𝐸𝑥) ∈ ℝ)
5048, 42, 44, 49syl3anc 1373 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) ∈ ℝ)
5136adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
5251rpred 13049 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ)
5335rpred 13049 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5453adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ)
55 simprrl 780 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈))
5626adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ)
57 min2 13204 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5856, 54, 57syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5950, 52, 54, 55, 58ltletrd 11393 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) < 𝑈)
60 ngpms 24537 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
6120, 60syl 17 . . . . . . . 8 (𝜑𝑊 ∈ MetSp)
6261adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
6322, 37mscl 24398 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝑋𝑉𝑦𝑉) → (𝑋𝐷𝑦) ∈ ℝ)
6462, 43, 45, 63syl3anc 1373 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) ∈ ℝ)
65 simprrr 781 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))
66 min1 13203 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6756, 54, 66syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6864, 52, 56, 65, 67ltletrd 11393 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) < 𝑇)
695, 22, 9, 37, 38, 23, 10, 39, 1, 18, 40, 41, 42, 43, 44, 45, 59, 68nlmvscnlem2 24622 . . . 4 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)
7069expr 456 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝑉)) → (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
7170ralrimivva 3187 . 2 (𝜑 → ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
72 breq2 5123 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐵𝐸𝑥) < 𝑟 ↔ (𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈)))
73 breq2 5123 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝑋𝐷𝑦) < 𝑟 ↔ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))
7472, 73anbi12d 632 . . . . 5 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) ↔ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))))
7574imbi1d 341 . . . 4 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅) ↔ (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)))
76752ralbidv 3205 . . 3 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅) ↔ ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)))
7776rspcev 3601 . 2 ((if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧ ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)) → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
7836, 71, 77syl2anc 584 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ifcif 4500   class class class wbr 5119  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   < clt 11267  cle 11268   / cdiv 11892  2c2 12293  +crp 13006  Basecbs 17226  Scalarcsca 17272   ·𝑠 cvsca 17273  distcds 17278  MetSpcms 24255  normcnm 24513  NrmGrpcngp 24514  NrmModcnlm 24517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-fz 13523  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-mulr 17283  df-tset 17288  df-ple 17289  df-ds 17291  df-0g 17453  df-topgen 17455  df-xrs 17514  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-sbg 18919  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-lmod 20817  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-xms 24257  df-ms 24258  df-nm 24519  df-ngp 24520  df-nrg 24522  df-nlm 24523
This theorem is referenced by:  nlmvscn  24624
  Copyright terms: Public domain W3C validator