MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscnlem1 Structured version   Visualization version   GIF version

Theorem nlmvscnlem1 24722
Description: Lemma for nlmvscn 24723. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.v 𝑉 = (Base‘𝑊)
nlmvscn.k 𝐾 = (Base‘𝐹)
nlmvscn.d 𝐷 = (dist‘𝑊)
nlmvscn.e 𝐸 = (dist‘𝐹)
nlmvscn.n 𝑁 = (norm‘𝑊)
nlmvscn.a 𝐴 = (norm‘𝐹)
nlmvscn.s · = ( ·𝑠𝑊)
nlmvscn.t 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
nlmvscn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
nlmvscn.w (𝜑𝑊 ∈ NrmMod)
nlmvscn.r (𝜑𝑅 ∈ ℝ+)
nlmvscn.b (𝜑𝐵𝐾)
nlmvscn.x (𝜑𝑋𝑉)
Assertion
Ref Expression
nlmvscnlem1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
Distinct variable groups:   𝐵,𝑟   𝐷,𝑟   𝐸,𝑟   𝑥,𝑦,𝜑   𝑥,𝑟,𝑦,𝑇   𝑈,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝐾,𝑟,𝑦   𝑅,𝑟   𝑉,𝑟   𝑊,𝑟,𝑥,𝑦   · ,𝑟,𝑥,𝑦   𝑋,𝑟
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑥,𝑦,𝑟)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐾(𝑥)   𝑁(𝑥,𝑦,𝑟)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem nlmvscnlem1
StepHypRef Expression
1 nlmvscn.t . . . 4 𝑇 = ((𝑅 / 2) / ((𝐴𝐵) + 1))
2 nlmvscn.r . . . . . 6 (𝜑𝑅 ∈ ℝ+)
32rphalfcld 13086 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ+)
4 nlmvscn.w . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
5 nlmvscn.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
65nlmngp2 24716 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
74, 6syl 17 . . . . . . 7 (𝜑𝐹 ∈ NrmGrp)
8 nlmvscn.b . . . . . . 7 (𝜑𝐵𝐾)
9 nlmvscn.k . . . . . . . 8 𝐾 = (Base‘𝐹)
10 nlmvscn.a . . . . . . . 8 𝐴 = (norm‘𝐹)
119, 10nmcl 24644 . . . . . . 7 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → (𝐴𝐵) ∈ ℝ)
127, 8, 11syl2anc 584 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ ℝ)
139, 10nmge0 24645 . . . . . . 7 ((𝐹 ∈ NrmGrp ∧ 𝐵𝐾) → 0 ≤ (𝐴𝐵))
147, 8, 13syl2anc 584 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝐵))
1512, 14ge0p1rpd 13104 . . . . 5 (𝜑 → ((𝐴𝐵) + 1) ∈ ℝ+)
163, 15rpdivcld 13091 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝐴𝐵) + 1)) ∈ ℝ+)
171, 16eqeltrid 2842 . . 3 (𝜑𝑇 ∈ ℝ+)
18 nlmvscn.u . . . 4 𝑈 = ((𝑅 / 2) / ((𝑁𝑋) + 𝑇))
19 nlmngp 24713 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
204, 19syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmGrp)
21 nlmvscn.x . . . . . . . 8 (𝜑𝑋𝑉)
22 nlmvscn.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
23 nlmvscn.n . . . . . . . . 9 𝑁 = (norm‘𝑊)
2422, 23nmcl 24644 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ ℝ)
2520, 21, 24syl2anc 584 . . . . . . 7 (𝜑 → (𝑁𝑋) ∈ ℝ)
2617rpred 13074 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2725, 26readdcld 11287 . . . . . 6 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ)
28 0red 11261 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
2922, 23nmge0 24645 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝑋𝑉) → 0 ≤ (𝑁𝑋))
3020, 21, 29syl2anc 584 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑋))
3125, 17ltaddrpd 13107 . . . . . . 7 (𝜑 → (𝑁𝑋) < ((𝑁𝑋) + 𝑇))
3228, 25, 27, 30, 31lelttrd 11416 . . . . . 6 (𝜑 → 0 < ((𝑁𝑋) + 𝑇))
3327, 32elrpd 13071 . . . . 5 (𝜑 → ((𝑁𝑋) + 𝑇) ∈ ℝ+)
343, 33rpdivcld 13091 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝑋) + 𝑇)) ∈ ℝ+)
3518, 34eqeltrid 2842 . . 3 (𝜑𝑈 ∈ ℝ+)
3617, 35ifcld 4576 . 2 (𝜑 → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
37 nlmvscn.d . . . . 5 𝐷 = (dist‘𝑊)
38 nlmvscn.e . . . . 5 𝐸 = (dist‘𝐹)
39 nlmvscn.s . . . . 5 · = ( ·𝑠𝑊)
404adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmMod)
412adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑅 ∈ ℝ+)
428adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐵𝐾)
4321adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑋𝑉)
44 simprll 779 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑥𝐾)
45 simprlr 780 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑦𝑉)
467adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐹 ∈ NrmGrp)
47 ngpms 24628 . . . . . . . 8 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
4846, 47syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐹 ∈ MetSp)
499, 38mscl 24486 . . . . . . 7 ((𝐹 ∈ MetSp ∧ 𝐵𝐾𝑥𝐾) → (𝐵𝐸𝑥) ∈ ℝ)
5048, 42, 44, 49syl3anc 1370 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) ∈ ℝ)
5136adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
5251rpred 13074 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ)
5335rpred 13074 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5453adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ)
55 simprrl 781 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈))
5626adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ)
57 min2 13228 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5856, 54, 57syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5950, 52, 54, 55, 58ltletrd 11418 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐸𝑥) < 𝑈)
60 ngpms 24628 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
6120, 60syl 17 . . . . . . . 8 (𝜑𝑊 ∈ MetSp)
6261adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
6322, 37mscl 24486 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝑋𝑉𝑦𝑉) → (𝑋𝐷𝑦) ∈ ℝ)
6462, 43, 45, 63syl3anc 1370 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) ∈ ℝ)
65 simprrr 782 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))
66 min1 13227 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6756, 54, 66syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6864, 52, 56, 65, 67ltletrd 11418 . . . . 5 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝑋𝐷𝑦) < 𝑇)
695, 22, 9, 37, 38, 23, 10, 39, 1, 18, 40, 41, 42, 43, 44, 45, 59, 68nlmvscnlem2 24721 . . . 4 ((𝜑 ∧ ((𝑥𝐾𝑦𝑉) ∧ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)
7069expr 456 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝑉)) → (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
7170ralrimivva 3199 . 2 (𝜑 → ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
72 breq2 5151 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐵𝐸𝑥) < 𝑟 ↔ (𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈)))
73 breq2 5151 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝑋𝐷𝑦) < 𝑟 ↔ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))
7472, 73anbi12d 632 . . . . 5 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) ↔ ((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))))
7574imbi1d 341 . . . 4 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅) ↔ (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)))
76752ralbidv 3218 . . 3 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅) ↔ ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)))
7776rspcev 3621 . 2 ((if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧ ∀𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝑋𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅)) → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
7836, 71, 77syl2anc 584 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝐾𝑦𝑉 (((𝐵𝐸𝑥) < 𝑟 ∧ (𝑋𝐷𝑦) < 𝑟) → ((𝐵 · 𝑋)𝐷(𝑥 · 𝑦)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  ifcif 4530   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cle 11293   / cdiv 11917  2c2 12318  +crp 13031  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  distcds 17306  MetSpcms 24343  normcnm 24604  NrmGrpcngp 24605  NrmModcnlm 24608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17487  df-topgen 17489  df-xrs 17548  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-lmod 20876  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-xms 24345  df-ms 24346  df-nm 24610  df-ngp 24611  df-nrg 24613  df-nlm 24614
This theorem is referenced by:  nlmvscn  24723
  Copyright terms: Public domain W3C validator