MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmmul0or Structured version   Visualization version   GIF version

Theorem nlmmul0or 24719
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmmul0or.v 𝑉 = (Base‘𝑊)
nlmmul0or.s · = ( ·𝑠𝑊)
nlmmul0or.z 0 = (0g𝑊)
nlmmul0or.f 𝐹 = (Scalar‘𝑊)
nlmmul0or.k 𝐾 = (Base‘𝐹)
nlmmul0or.o 𝑂 = (0g𝐹)
Assertion
Ref Expression
nlmmul0or ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂𝐵 = 0 )))

Proof of Theorem nlmmul0or
StepHypRef Expression
1 nlmmul0or.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
21nlmngp2 24716 . . . . . 6 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
323ad2ant1 1132 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐹 ∈ NrmGrp)
4 simp2 1136 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐴𝐾)
5 nlmmul0or.k . . . . . 6 𝐾 = (Base‘𝐹)
6 eqid 2734 . . . . . 6 (norm‘𝐹) = (norm‘𝐹)
75, 6nmcl 24644 . . . . 5 ((𝐹 ∈ NrmGrp ∧ 𝐴𝐾) → ((norm‘𝐹)‘𝐴) ∈ ℝ)
83, 4, 7syl2anc 584 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℝ)
98recnd 11286 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℂ)
10 nlmngp 24713 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
11103ad2ant1 1132 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝑊 ∈ NrmGrp)
12 simp3 1137 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐵𝑉)
13 nlmmul0or.v . . . . . 6 𝑉 = (Base‘𝑊)
14 eqid 2734 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
1513, 14nmcl 24644 . . . . 5 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ)
1611, 12, 15syl2anc 584 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ)
1716recnd 11286 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℂ)
189, 17mul0ord 11910 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0)))
19 nlmmul0or.s . . . . 5 · = ( ·𝑠𝑊)
2013, 14, 19, 1, 5, 6nmvs 24712 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)))
2120eqeq1d 2736 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0))
22 nlmlmod 24714 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2313, 1, 19, 5lmodvscl 20892 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
2422, 23syl3an1 1162 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
25 nlmmul0or.z . . . . 5 0 = (0g𝑊)
2613, 14, 25nmeq0 24646 . . . 4 ((𝑊 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
2711, 24, 26syl2anc 584 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
2821, 27bitr3d 281 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
29 nlmmul0or.o . . . . 5 𝑂 = (0g𝐹)
305, 6, 29nmeq0 24646 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝐴𝐾) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂))
313, 4, 30syl2anc 584 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂))
3213, 14, 25nmeq0 24646 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 ))
3311, 12, 32syl2anc 584 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 ))
3431, 33orbi12d 918 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0) ↔ (𝐴 = 𝑂𝐵 = 0 )))
3518, 28, 343bitr3d 309 1 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂𝐵 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  w3a 1086   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152   · cmul 11157  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17485  LModclmod 20874  normcnm 24604  NrmGrpcngp 24605  NrmModcnlm 24608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-0g 17487  df-topgen 17489  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-lmod 20876  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-xms 24345  df-ms 24346  df-nm 24610  df-ngp 24611  df-nrg 24613  df-nlm 24614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator