MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmmul0or Structured version   Visualization version   GIF version

Theorem nlmmul0or 24725
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmmul0or.v 𝑉 = (Base‘𝑊)
nlmmul0or.s · = ( ·𝑠𝑊)
nlmmul0or.z 0 = (0g𝑊)
nlmmul0or.f 𝐹 = (Scalar‘𝑊)
nlmmul0or.k 𝐾 = (Base‘𝐹)
nlmmul0or.o 𝑂 = (0g𝐹)
Assertion
Ref Expression
nlmmul0or ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂𝐵 = 0 )))

Proof of Theorem nlmmul0or
StepHypRef Expression
1 nlmmul0or.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
21nlmngp2 24722 . . . . . 6 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
323ad2ant1 1133 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐹 ∈ NrmGrp)
4 simp2 1137 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐴𝐾)
5 nlmmul0or.k . . . . . 6 𝐾 = (Base‘𝐹)
6 eqid 2740 . . . . . 6 (norm‘𝐹) = (norm‘𝐹)
75, 6nmcl 24650 . . . . 5 ((𝐹 ∈ NrmGrp ∧ 𝐴𝐾) → ((norm‘𝐹)‘𝐴) ∈ ℝ)
83, 4, 7syl2anc 583 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℝ)
98recnd 11318 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℂ)
10 nlmngp 24719 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
11103ad2ant1 1133 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝑊 ∈ NrmGrp)
12 simp3 1138 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐵𝑉)
13 nlmmul0or.v . . . . . 6 𝑉 = (Base‘𝑊)
14 eqid 2740 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
1513, 14nmcl 24650 . . . . 5 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ)
1611, 12, 15syl2anc 583 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ)
1716recnd 11318 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℂ)
189, 17mul0ord 11940 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0)))
19 nlmmul0or.s . . . . 5 · = ( ·𝑠𝑊)
2013, 14, 19, 1, 5, 6nmvs 24718 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)))
2120eqeq1d 2742 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0))
22 nlmlmod 24720 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2313, 1, 19, 5lmodvscl 20898 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
2422, 23syl3an1 1163 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
25 nlmmul0or.z . . . . 5 0 = (0g𝑊)
2613, 14, 25nmeq0 24652 . . . 4 ((𝑊 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
2711, 24, 26syl2anc 583 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
2821, 27bitr3d 281 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
29 nlmmul0or.o . . . . 5 𝑂 = (0g𝐹)
305, 6, 29nmeq0 24652 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝐴𝐾) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂))
313, 4, 30syl2anc 583 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂))
3213, 14, 25nmeq0 24652 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 ))
3311, 12, 32syl2anc 583 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 ))
3431, 33orbi12d 917 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0) ↔ (𝐴 = 𝑂𝐵 = 0 )))
3518, 28, 343bitr3d 309 1 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂𝐵 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 846  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LModclmod 20880  normcnm 24610  NrmGrpcngp 24611  NrmModcnlm 24614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-lmod 20882  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617  df-nrg 24619  df-nlm 24620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator