| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmmul0or | Structured version Visualization version GIF version | ||
| Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmmul0or.v | ⊢ 𝑉 = (Base‘𝑊) |
| nlmmul0or.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| nlmmul0or.z | ⊢ 0 = (0g‘𝑊) |
| nlmmul0or.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| nlmmul0or.k | ⊢ 𝐾 = (Base‘𝐹) |
| nlmmul0or.o | ⊢ 𝑂 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| nlmmul0or | ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmmul0or.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | nlmngp2 24617 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
| 3 | 2 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ NrmGrp) |
| 4 | simp2 1137 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝐾) | |
| 5 | nlmmul0or.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 6 | eqid 2735 | . . . . . 6 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
| 7 | 5, 6 | nmcl 24553 | . . . . 5 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾) → ((norm‘𝐹)‘𝐴) ∈ ℝ) |
| 8 | 3, 4, 7 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℝ) |
| 9 | 8 | recnd 11261 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℂ) |
| 10 | nlmngp 24614 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
| 11 | 10 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ NrmGrp) |
| 12 | simp3 1138 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 13 | nlmmul0or.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 14 | eqid 2735 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 15 | 13, 14 | nmcl 24553 | . . . . 5 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ) |
| 16 | 11, 12, 15 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ) |
| 17 | 16 | recnd 11261 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℂ) |
| 18 | 9, 17 | mul0ord 11885 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0))) |
| 19 | nlmmul0or.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 20 | 13, 14, 19, 1, 5, 6 | nmvs 24613 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵))) |
| 21 | 20 | eqeq1d 2737 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0)) |
| 22 | nlmlmod 24615 | . . . . 5 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
| 23 | 13, 1, 19, 5 | lmodvscl 20833 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
| 24 | 22, 23 | syl3an1 1163 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
| 25 | nlmmul0or.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 26 | 13, 14, 25 | nmeq0 24555 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
| 27 | 11, 24, 26 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
| 28 | 21, 27 | bitr3d 281 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
| 29 | nlmmul0or.o | . . . . 5 ⊢ 𝑂 = (0g‘𝐹) | |
| 30 | 5, 6, 29 | nmeq0 24555 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂)) |
| 31 | 3, 4, 30 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂)) |
| 32 | 13, 14, 25 | nmeq0 24555 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 )) |
| 33 | 11, 12, 32 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 )) |
| 34 | 31, 33 | orbi12d 918 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0) ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
| 35 | 18, 28, 34 | 3bitr3d 309 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 · cmul 11132 Basecbs 17226 Scalarcsca 17272 ·𝑠 cvsca 17273 0gc0g 17451 LModclmod 20815 normcnm 24513 NrmGrpcngp 24514 NrmModcnlm 24517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-0g 17453 df-topgen 17455 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-lmod 20817 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-xms 24257 df-ms 24258 df-nm 24519 df-ngp 24520 df-nrg 24522 df-nlm 24523 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |