![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmmul0or | Structured version Visualization version GIF version |
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmmul0or.v | ⊢ 𝑉 = (Base‘𝑊) |
nlmmul0or.s | ⊢ · = ( ·𝑠 ‘𝑊) |
nlmmul0or.z | ⊢ 0 = (0g‘𝑊) |
nlmmul0or.f | ⊢ 𝐹 = (Scalar‘𝑊) |
nlmmul0or.k | ⊢ 𝐾 = (Base‘𝐹) |
nlmmul0or.o | ⊢ 𝑂 = (0g‘𝐹) |
Ref | Expression |
---|---|
nlmmul0or | ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlmmul0or.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | nlmngp2 24722 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
3 | 2 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ NrmGrp) |
4 | simp2 1137 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝐾) | |
5 | nlmmul0or.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2740 | . . . . . 6 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
7 | 5, 6 | nmcl 24650 | . . . . 5 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾) → ((norm‘𝐹)‘𝐴) ∈ ℝ) |
8 | 3, 4, 7 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℝ) |
9 | 8 | recnd 11318 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℂ) |
10 | nlmngp 24719 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
11 | 10 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ NrmGrp) |
12 | simp3 1138 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
13 | nlmmul0or.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
14 | eqid 2740 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
15 | 13, 14 | nmcl 24650 | . . . . 5 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ) |
16 | 11, 12, 15 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ) |
17 | 16 | recnd 11318 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℂ) |
18 | 9, 17 | mul0ord 11940 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0))) |
19 | nlmmul0or.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
20 | 13, 14, 19, 1, 5, 6 | nmvs 24718 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵))) |
21 | 20 | eqeq1d 2742 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0)) |
22 | nlmlmod 24720 | . . . . 5 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
23 | 13, 1, 19, 5 | lmodvscl 20898 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
24 | 22, 23 | syl3an1 1163 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
25 | nlmmul0or.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
26 | 13, 14, 25 | nmeq0 24652 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
27 | 11, 24, 26 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
28 | 21, 27 | bitr3d 281 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
29 | nlmmul0or.o | . . . . 5 ⊢ 𝑂 = (0g‘𝐹) | |
30 | 5, 6, 29 | nmeq0 24652 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂)) |
31 | 3, 4, 30 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂)) |
32 | 13, 14, 25 | nmeq0 24652 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 )) |
33 | 11, 12, 32 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 )) |
34 | 31, 33 | orbi12d 917 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0) ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
35 | 18, 28, 34 | 3bitr3d 309 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 · cmul 11189 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 LModclmod 20880 normcnm 24610 NrmGrpcngp 24611 NrmModcnlm 24614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-0g 17501 df-topgen 17503 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-lmod 20882 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-xms 24351 df-ms 24352 df-nm 24616 df-ngp 24617 df-nrg 24619 df-nlm 24620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |