Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmmul0or Structured version   Visualization version   GIF version

Theorem nlmmul0or 23287
 Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmmul0or.v 𝑉 = (Base‘𝑊)
nlmmul0or.s · = ( ·𝑠𝑊)
nlmmul0or.z 0 = (0g𝑊)
nlmmul0or.f 𝐹 = (Scalar‘𝑊)
nlmmul0or.k 𝐾 = (Base‘𝐹)
nlmmul0or.o 𝑂 = (0g𝐹)
Assertion
Ref Expression
nlmmul0or ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂𝐵 = 0 )))

Proof of Theorem nlmmul0or
StepHypRef Expression
1 nlmmul0or.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
21nlmngp2 23284 . . . . . 6 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
323ad2ant1 1130 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐹 ∈ NrmGrp)
4 simp2 1134 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐴𝐾)
5 nlmmul0or.k . . . . . 6 𝐾 = (Base‘𝐹)
6 eqid 2822 . . . . . 6 (norm‘𝐹) = (norm‘𝐹)
75, 6nmcl 23220 . . . . 5 ((𝐹 ∈ NrmGrp ∧ 𝐴𝐾) → ((norm‘𝐹)‘𝐴) ∈ ℝ)
83, 4, 7syl2anc 587 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℝ)
98recnd 10658 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℂ)
10 nlmngp 23281 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
11103ad2ant1 1130 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝑊 ∈ NrmGrp)
12 simp3 1135 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐵𝑉)
13 nlmmul0or.v . . . . . 6 𝑉 = (Base‘𝑊)
14 eqid 2822 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
1513, 14nmcl 23220 . . . . 5 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ)
1611, 12, 15syl2anc 587 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ)
1716recnd 10658 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℂ)
189, 17mul0ord 11279 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0)))
19 nlmmul0or.s . . . . 5 · = ( ·𝑠𝑊)
2013, 14, 19, 1, 5, 6nmvs 23280 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)))
2120eqeq1d 2824 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0))
22 nlmlmod 23282 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2313, 1, 19, 5lmodvscl 19642 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
2422, 23syl3an1 1160 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
25 nlmmul0or.z . . . . 5 0 = (0g𝑊)
2613, 14, 25nmeq0 23222 . . . 4 ((𝑊 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
2711, 24, 26syl2anc 587 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
2821, 27bitr3d 284 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
29 nlmmul0or.o . . . . 5 𝑂 = (0g𝐹)
305, 6, 29nmeq0 23222 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝐴𝐾) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂))
313, 4, 30syl2anc 587 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂))
3213, 14, 25nmeq0 23222 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 ))
3311, 12, 32syl2anc 587 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 ))
3431, 33orbi12d 916 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0) ↔ (𝐴 = 𝑂𝐵 = 0 )))
3518, 28, 343bitr3d 312 1 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂𝐵 = 0 )))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  ‘cfv 6334  (class class class)co 7140  ℝcr 10525  0cc0 10526   · cmul 10531  Basecbs 16474  Scalarcsca 16559   ·𝑠 cvsca 16560  0gc0g 16704  LModclmod 19625  normcnm 23181  NrmGrpcngp 23182  NrmModcnlm 23185 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-0g 16706  df-topgen 16708  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-lmod 19627  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-xms 22925  df-ms 22926  df-nm 23187  df-ngp 23188  df-nrg 23190  df-nlm 23191 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator