MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmmul0or Structured version   Visualization version   GIF version

Theorem nlmmul0or 23289
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmmul0or.v 𝑉 = (Base‘𝑊)
nlmmul0or.s · = ( ·𝑠𝑊)
nlmmul0or.z 0 = (0g𝑊)
nlmmul0or.f 𝐹 = (Scalar‘𝑊)
nlmmul0or.k 𝐾 = (Base‘𝐹)
nlmmul0or.o 𝑂 = (0g𝐹)
Assertion
Ref Expression
nlmmul0or ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂𝐵 = 0 )))

Proof of Theorem nlmmul0or
StepHypRef Expression
1 nlmmul0or.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
21nlmngp2 23286 . . . . . 6 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
323ad2ant1 1130 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐹 ∈ NrmGrp)
4 simp2 1134 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐴𝐾)
5 nlmmul0or.k . . . . . 6 𝐾 = (Base‘𝐹)
6 eqid 2798 . . . . . 6 (norm‘𝐹) = (norm‘𝐹)
75, 6nmcl 23222 . . . . 5 ((𝐹 ∈ NrmGrp ∧ 𝐴𝐾) → ((norm‘𝐹)‘𝐴) ∈ ℝ)
83, 4, 7syl2anc 587 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℝ)
98recnd 10658 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℂ)
10 nlmngp 23283 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
11103ad2ant1 1130 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝑊 ∈ NrmGrp)
12 simp3 1135 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → 𝐵𝑉)
13 nlmmul0or.v . . . . . 6 𝑉 = (Base‘𝑊)
14 eqid 2798 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
1513, 14nmcl 23222 . . . . 5 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ)
1611, 12, 15syl2anc 587 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ)
1716recnd 10658 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℂ)
189, 17mul0ord 11279 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0)))
19 nlmmul0or.s . . . . 5 · = ( ·𝑠𝑊)
2013, 14, 19, 1, 5, 6nmvs 23282 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝑊)‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)))
2120eqeq1d 2800 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0))
22 nlmlmod 23284 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2313, 1, 19, 5lmodvscl 19644 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
2422, 23syl3an1 1160 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
25 nlmmul0or.z . . . . 5 0 = (0g𝑊)
2613, 14, 25nmeq0 23224 . . . 4 ((𝑊 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
2711, 24, 26syl2anc 587 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
2821, 27bitr3d 284 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 ))
29 nlmmul0or.o . . . . 5 𝑂 = (0g𝐹)
305, 6, 29nmeq0 23224 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝐴𝐾) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂))
313, 4, 30syl2anc 587 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂))
3213, 14, 25nmeq0 23224 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 ))
3311, 12, 32syl2anc 587 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 ))
3431, 33orbi12d 916 . 2 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0) ↔ (𝐴 = 𝑂𝐵 = 0 )))
3518, 28, 343bitr3d 312 1 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂𝐵 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   · cmul 10531  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  LModclmod 19627  normcnm 23183  NrmGrpcngp 23184  NrmModcnlm 23187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-lmod 19629  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-nrg 23192  df-nlm 23193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator