Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlmmul0or | Structured version Visualization version GIF version |
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (Revised by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmmul0or.v | ⊢ 𝑉 = (Base‘𝑊) |
nlmmul0or.s | ⊢ · = ( ·𝑠 ‘𝑊) |
nlmmul0or.z | ⊢ 0 = (0g‘𝑊) |
nlmmul0or.f | ⊢ 𝐹 = (Scalar‘𝑊) |
nlmmul0or.k | ⊢ 𝐾 = (Base‘𝐹) |
nlmmul0or.o | ⊢ 𝑂 = (0g‘𝐹) |
Ref | Expression |
---|---|
nlmmul0or | ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlmmul0or.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | nlmngp2 23825 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
3 | 2 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ NrmGrp) |
4 | simp2 1135 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝐾) | |
5 | nlmmul0or.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
6 | eqid 2739 | . . . . . 6 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
7 | 5, 6 | nmcl 23753 | . . . . 5 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾) → ((norm‘𝐹)‘𝐴) ∈ ℝ) |
8 | 3, 4, 7 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℝ) |
9 | 8 | recnd 10987 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) ∈ ℂ) |
10 | nlmngp 23822 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
11 | 10 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ NrmGrp) |
12 | simp3 1136 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
13 | nlmmul0or.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
14 | eqid 2739 | . . . . . 6 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
15 | 13, 14 | nmcl 23753 | . . . . 5 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ) |
16 | 11, 12, 15 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℝ) |
17 | 16 | recnd 10987 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘𝐵) ∈ ℂ) |
18 | 9, 17 | mul0ord 11608 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0))) |
19 | nlmmul0or.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
20 | 13, 14, 19, 1, 5, 6 | nmvs 23821 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑊)‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵))) |
21 | 20 | eqeq1d 2741 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0)) |
22 | nlmlmod 23823 | . . . . 5 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
23 | 13, 1, 19, 5 | lmodvscl 20121 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
24 | 22, 23 | syl3an1 1161 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
25 | nlmmul0or.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
26 | 13, 14, 25 | nmeq0 23755 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝐴 · 𝐵) ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
27 | 11, 24, 26 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘(𝐴 · 𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
28 | 21, 27 | bitr3d 280 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) · ((norm‘𝑊)‘𝐵)) = 0 ↔ (𝐴 · 𝐵) = 0 )) |
29 | nlmmul0or.o | . . . . 5 ⊢ 𝑂 = (0g‘𝐹) | |
30 | 5, 6, 29 | nmeq0 23755 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂)) |
31 | 3, 4, 30 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝐹)‘𝐴) = 0 ↔ 𝐴 = 𝑂)) |
32 | 13, 14, 25 | nmeq0 23755 | . . . 4 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 )) |
33 | 11, 12, 32 | syl2anc 583 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝑊)‘𝐵) = 0 ↔ 𝐵 = 0 )) |
34 | 31, 33 | orbi12d 915 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((((norm‘𝐹)‘𝐴) = 0 ∨ ((norm‘𝑊)‘𝐵) = 0) ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
35 | 18, 28, 34 | 3bitr3d 308 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 𝑂 ∨ 𝐵 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 0cc0 10855 · cmul 10860 Basecbs 16893 Scalarcsca 16946 ·𝑠 cvsca 16947 0gc0g 17131 LModclmod 20104 normcnm 23713 NrmGrpcngp 23714 NrmModcnlm 23717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-0g 17133 df-topgen 17135 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-lmod 20106 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-top 22024 df-topon 22041 df-topsp 22063 df-bases 22077 df-xms 23454 df-ms 23455 df-nm 23719 df-ngp 23720 df-nrg 23722 df-nlm 23723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |