Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrkbimka Structured version   Visualization version   GIF version

Theorem ntrkbimka 41537
Description: If the interiors of disjoint sets are disjoint, then the interior of the empty set is the empty set. (Contributed by RP, 14-Jun-2021.)
Assertion
Ref Expression
ntrkbimka (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡

Proof of Theorem ntrkbimka
StepHypRef Expression
1 inidm 4149 . 2 ((𝐼‘∅) ∩ (𝐼‘∅)) = (𝐼‘∅)
2 0elpw 5273 . . 3 ∅ ∈ 𝒫 𝐵
3 ineq1 4136 . . . . . . 7 (𝑠 = ∅ → (𝑠𝑡) = (∅ ∩ 𝑡))
43eqeq1d 2740 . . . . . 6 (𝑠 = ∅ → ((𝑠𝑡) = ∅ ↔ (∅ ∩ 𝑡) = ∅))
5 fveq2 6756 . . . . . . . 8 (𝑠 = ∅ → (𝐼𝑠) = (𝐼‘∅))
65ineq1d 4142 . . . . . . 7 (𝑠 = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼‘∅) ∩ (𝐼𝑡)))
76eqeq1d 2740 . . . . . 6 (𝑠 = ∅ → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
84, 7imbi12d 344 . . . . 5 (𝑠 = ∅ → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅)))
9 0in 4324 . . . . . 6 (∅ ∩ 𝑡) = ∅
10 pm5.5 361 . . . . . 6 ((∅ ∩ 𝑡) = ∅ → (((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
119, 10ax-mp 5 . . . . 5 (((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅)
128, 11bitrdi 286 . . . 4 (𝑠 = ∅ → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
13 fveq2 6756 . . . . . 6 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1413ineq2d 4143 . . . . 5 (𝑡 = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ((𝐼‘∅) ∩ (𝐼‘∅)))
1514eqeq1d 2740 . . . 4 (𝑡 = ∅ → (((𝐼‘∅) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅))
1612, 15rspc2v 3562 . . 3 ((∅ ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅))
172, 2, 16mp2an 688 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅)
181, 17eqtr3id 2793 1 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wral 3063  cin 3882  c0 4253  𝒫 cpw 4530  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator