Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrkbimka Structured version   Visualization version   GIF version

Theorem ntrkbimka 43999
Description: If the interiors of disjoint sets are disjoint, then the interior of the empty set is the empty set. (Contributed by RP, 14-Jun-2021.)
Assertion
Ref Expression
ntrkbimka (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡

Proof of Theorem ntrkbimka
StepHypRef Expression
1 inidm 4198 . 2 ((𝐼‘∅) ∩ (𝐼‘∅)) = (𝐼‘∅)
2 0elpw 5319 . . 3 ∅ ∈ 𝒫 𝐵
3 ineq1 4184 . . . . . . 7 (𝑠 = ∅ → (𝑠𝑡) = (∅ ∩ 𝑡))
43eqeq1d 2732 . . . . . 6 (𝑠 = ∅ → ((𝑠𝑡) = ∅ ↔ (∅ ∩ 𝑡) = ∅))
5 fveq2 6865 . . . . . . . 8 (𝑠 = ∅ → (𝐼𝑠) = (𝐼‘∅))
65ineq1d 4190 . . . . . . 7 (𝑠 = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼‘∅) ∩ (𝐼𝑡)))
76eqeq1d 2732 . . . . . 6 (𝑠 = ∅ → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
84, 7imbi12d 344 . . . . 5 (𝑠 = ∅ → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅)))
9 0in 4368 . . . . . 6 (∅ ∩ 𝑡) = ∅
10 pm5.5 361 . . . . . 6 ((∅ ∩ 𝑡) = ∅ → (((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
119, 10ax-mp 5 . . . . 5 (((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅)
128, 11bitrdi 287 . . . 4 (𝑠 = ∅ → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
13 fveq2 6865 . . . . . 6 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1413ineq2d 4191 . . . . 5 (𝑡 = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ((𝐼‘∅) ∩ (𝐼‘∅)))
1514eqeq1d 2732 . . . 4 (𝑡 = ∅ → (((𝐼‘∅) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅))
1612, 15rspc2v 3608 . . 3 ((∅ ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅))
172, 2, 16mp2an 692 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅)
181, 17eqtr3id 2779 1 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3046  cin 3921  c0 4304  𝒫 cpw 4571  cfv 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5269
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator