Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrkbimka Structured version   Visualization version   GIF version

Theorem ntrkbimka 44002
Description: If the interiors of disjoint sets are disjoint, then the interior of the empty set is the empty set. (Contributed by RP, 14-Jun-2021.)
Assertion
Ref Expression
ntrkbimka (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡

Proof of Theorem ntrkbimka
StepHypRef Expression
1 inidm 4248 . 2 ((𝐼‘∅) ∩ (𝐼‘∅)) = (𝐼‘∅)
2 0elpw 5374 . . 3 ∅ ∈ 𝒫 𝐵
3 ineq1 4234 . . . . . . 7 (𝑠 = ∅ → (𝑠𝑡) = (∅ ∩ 𝑡))
43eqeq1d 2742 . . . . . 6 (𝑠 = ∅ → ((𝑠𝑡) = ∅ ↔ (∅ ∩ 𝑡) = ∅))
5 fveq2 6922 . . . . . . . 8 (𝑠 = ∅ → (𝐼𝑠) = (𝐼‘∅))
65ineq1d 4240 . . . . . . 7 (𝑠 = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼‘∅) ∩ (𝐼𝑡)))
76eqeq1d 2742 . . . . . 6 (𝑠 = ∅ → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
84, 7imbi12d 344 . . . . 5 (𝑠 = ∅ → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅)))
9 0in 4420 . . . . . 6 (∅ ∩ 𝑡) = ∅
10 pm5.5 361 . . . . . 6 ((∅ ∩ 𝑡) = ∅ → (((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
119, 10ax-mp 5 . . . . 5 (((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅)
128, 11bitrdi 287 . . . 4 (𝑠 = ∅ → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
13 fveq2 6922 . . . . . 6 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1413ineq2d 4241 . . . . 5 (𝑡 = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ((𝐼‘∅) ∩ (𝐼‘∅)))
1514eqeq1d 2742 . . . 4 (𝑡 = ∅ → (((𝐼‘∅) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅))
1612, 15rspc2v 3646 . . 3 ((∅ ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅))
172, 2, 16mp2an 691 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅)
181, 17eqtr3id 2794 1 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wral 3067  cin 3975  c0 4352  𝒫 cpw 4622  cfv 6575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator