Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrkbimka Structured version   Visualization version   GIF version

Theorem ntrkbimka 40741
Description: If the interiors of disjoint sets are disjoint, then the interior of the empty set is the empty set. (Contributed by RP, 14-Jun-2021.)
Assertion
Ref Expression
ntrkbimka (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
Distinct variable groups:   𝐵,𝑠,𝑡   𝐼,𝑠,𝑡

Proof of Theorem ntrkbimka
StepHypRef Expression
1 inidm 4145 . 2 ((𝐼‘∅) ∩ (𝐼‘∅)) = (𝐼‘∅)
2 0elpw 5221 . . 3 ∅ ∈ 𝒫 𝐵
3 ineq1 4131 . . . . . . 7 (𝑠 = ∅ → (𝑠𝑡) = (∅ ∩ 𝑡))
43eqeq1d 2800 . . . . . 6 (𝑠 = ∅ → ((𝑠𝑡) = ∅ ↔ (∅ ∩ 𝑡) = ∅))
5 fveq2 6645 . . . . . . . 8 (𝑠 = ∅ → (𝐼𝑠) = (𝐼‘∅))
65ineq1d 4138 . . . . . . 7 (𝑠 = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼‘∅) ∩ (𝐼𝑡)))
76eqeq1d 2800 . . . . . 6 (𝑠 = ∅ → (((𝐼𝑠) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
84, 7imbi12d 348 . . . . 5 (𝑠 = ∅ → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅)))
9 0in 4301 . . . . . 6 (∅ ∩ 𝑡) = ∅
10 pm5.5 365 . . . . . 6 ((∅ ∩ 𝑡) = ∅ → (((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
119, 10ax-mp 5 . . . . 5 (((∅ ∩ 𝑡) = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅)
128, 11syl6bb 290 . . . 4 (𝑠 = ∅ → (((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ((𝐼‘∅) ∩ (𝐼𝑡)) = ∅))
13 fveq2 6645 . . . . . 6 (𝑡 = ∅ → (𝐼𝑡) = (𝐼‘∅))
1413ineq2d 4139 . . . . 5 (𝑡 = ∅ → ((𝐼‘∅) ∩ (𝐼𝑡)) = ((𝐼‘∅) ∩ (𝐼‘∅)))
1514eqeq1d 2800 . . . 4 (𝑡 = ∅ → (((𝐼‘∅) ∩ (𝐼𝑡)) = ∅ ↔ ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅))
1612, 15rspc2v 3581 . . 3 ((∅ ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅))
172, 2, 16mp2an 691 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → ((𝐼‘∅) ∩ (𝐼‘∅)) = ∅)
181, 17syl5eqr 2847 1 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wral 3106  cin 3880  c0 4243  𝒫 cpw 4497  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator