MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulsslt Structured version   Visualization version   GIF version

Theorem nulsslt 27766
Description: The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
nulsslt (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴)

Proof of Theorem nulsslt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5282 . . 3 ∅ ∈ V
21a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ∈ V)
3 id 22 . 2 (𝐴 ∈ 𝒫 No 𝐴 ∈ 𝒫 No )
4 0ss 4380 . . 3 ∅ ⊆ No
54a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ⊆ No )
6 elpwi 4587 . 2 (𝐴 ∈ 𝒫 No 𝐴 No )
7 noel 4318 . . . 4 ¬ 𝑥 ∈ ∅
87pm2.21i 119 . . 3 (𝑥 ∈ ∅ → 𝑥 <s 𝑦)
983ad2ant2 1134 . 2 ((𝐴 ∈ 𝒫 No 𝑥 ∈ ∅ ∧ 𝑦𝐴) → 𝑥 <s 𝑦)
102, 3, 5, 6, 9ssltd 27760 1 (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3464  wss 3931  c0 4313  𝒫 cpw 4580   class class class wbr 5124   No csur 27608   <s cslt 27609   <<s csslt 27749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-sslt 27750
This theorem is referenced by:  bday0s  27797  bday0b  27799
  Copyright terms: Public domain W3C validator