| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nulsslt | Structured version Visualization version GIF version | ||
| Description: The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| nulsslt | ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
| 3 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
| 4 | 0ss 4351 | . . 3 ⊢ ∅ ⊆ No | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
| 6 | elpwi 4558 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
| 7 | noel 4289 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → 𝑥 <s 𝑦) |
| 9 | 8 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴) → 𝑥 <s 𝑦) |
| 10 | 2, 3, 5, 6, 9 | ssltd 27741 | 1 ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3438 ⊆ wss 3899 ∅c0 4284 𝒫 cpw 4551 class class class wbr 5095 No csur 27588 <s cslt 27589 <<s csslt 27730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-sslt 27731 |
| This theorem is referenced by: bday0s 27782 bday0b 27784 |
| Copyright terms: Public domain | W3C validator |