Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nulsslt | Structured version Visualization version GIF version |
Description: The empty set is less than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulsslt | ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5231 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
3 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
4 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ No | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
6 | elpwi 4542 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
7 | noel 4264 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → 𝑥 <s 𝑦) |
9 | 8 | 3ad2ant2 1133 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴) → 𝑥 <s 𝑦) |
10 | 2, 3, 5, 6, 9 | ssltd 33986 | 1 ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5074 No csur 33843 <s cslt 33844 <<s csslt 33975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-sslt 33976 |
This theorem is referenced by: bday0s 34022 bday0b 34024 |
Copyright terms: Public domain | W3C validator |