MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulsslt Structured version   Visualization version   GIF version

Theorem nulsslt 27731
Description: The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
nulsslt (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴)

Proof of Theorem nulsslt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5243 . . 3 ∅ ∈ V
21a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ∈ V)
3 id 22 . 2 (𝐴 ∈ 𝒫 No 𝐴 ∈ 𝒫 No )
4 0ss 4348 . . 3 ∅ ⊆ No
54a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ⊆ No )
6 elpwi 4555 . 2 (𝐴 ∈ 𝒫 No 𝐴 No )
7 noel 4286 . . . 4 ¬ 𝑥 ∈ ∅
87pm2.21i 119 . . 3 (𝑥 ∈ ∅ → 𝑥 <s 𝑦)
983ad2ant2 1134 . 2 ((𝐴 ∈ 𝒫 No 𝑥 ∈ ∅ ∧ 𝑦𝐴) → 𝑥 <s 𝑦)
102, 3, 5, 6, 9ssltd 27724 1 (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3434  wss 3900  c0 4281  𝒫 cpw 4548   class class class wbr 5089   No csur 27571   <s cslt 27572   <<s csslt 27713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-sslt 27714
This theorem is referenced by:  bday0s  27765  bday0b  27767
  Copyright terms: Public domain W3C validator