![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nulsslt | Structured version Visualization version GIF version |
Description: The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulsslt | ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5308 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
3 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
4 | 0ss 4397 | . . 3 ⊢ ∅ ⊆ No | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
6 | elpwi 4610 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
7 | noel 4331 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → 𝑥 <s 𝑦) |
9 | 8 | 3ad2ant2 1135 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴) → 𝑥 <s 𝑦) |
10 | 2, 3, 5, 6, 9 | ssltd 27293 | 1 ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 ∅c0 4323 𝒫 cpw 4603 class class class wbr 5149 No csur 27143 <s cslt 27144 <<s csslt 27282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-sslt 27283 |
This theorem is referenced by: bday0s 27329 bday0b 27331 |
Copyright terms: Public domain | W3C validator |