MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulsslt Structured version   Visualization version   GIF version

Theorem nulsslt 27797
Description: The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
nulsslt (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴)

Proof of Theorem nulsslt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5289 . . 3 ∅ ∈ V
21a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ∈ V)
3 id 22 . 2 (𝐴 ∈ 𝒫 No 𝐴 ∈ 𝒫 No )
4 0ss 4382 . . 3 ∅ ⊆ No
54a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ⊆ No )
6 elpwi 4589 . 2 (𝐴 ∈ 𝒫 No 𝐴 No )
7 noel 4320 . . . 4 ¬ 𝑥 ∈ ∅
87pm2.21i 119 . . 3 (𝑥 ∈ ∅ → 𝑥 <s 𝑦)
983ad2ant2 1134 . 2 ((𝐴 ∈ 𝒫 No 𝑥 ∈ ∅ ∧ 𝑦𝐴) → 𝑥 <s 𝑦)
102, 3, 5, 6, 9ssltd 27791 1 (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3464  wss 3933  c0 4315  𝒫 cpw 4582   class class class wbr 5125   No csur 27639   <s cslt 27640   <<s csslt 27780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673  df-sslt 27781
This theorem is referenced by:  bday0s  27828  bday0b  27830
  Copyright terms: Public domain W3C validator