Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nulsslt Structured version   Visualization version   GIF version

Theorem nulsslt 33991
Description: The empty set is less than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
nulsslt (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴)

Proof of Theorem nulsslt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5231 . . 3 ∅ ∈ V
21a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ∈ V)
3 id 22 . 2 (𝐴 ∈ 𝒫 No 𝐴 ∈ 𝒫 No )
4 0ss 4330 . . 3 ∅ ⊆ No
54a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ⊆ No )
6 elpwi 4542 . 2 (𝐴 ∈ 𝒫 No 𝐴 No )
7 noel 4264 . . . 4 ¬ 𝑥 ∈ ∅
87pm2.21i 119 . . 3 (𝑥 ∈ ∅ → 𝑥 <s 𝑦)
983ad2ant2 1133 . 2 ((𝐴 ∈ 𝒫 No 𝑥 ∈ ∅ ∧ 𝑦𝐴) → 𝑥 <s 𝑦)
102, 3, 5, 6, 9ssltd 33986 1 (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   class class class wbr 5074   No csur 33843   <s cslt 33844   <<s csslt 33975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-sslt 33976
This theorem is referenced by:  bday0s  34022  bday0b  34024
  Copyright terms: Public domain W3C validator