![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nulsslt | Structured version Visualization version GIF version |
Description: The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulsslt | ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5309 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
3 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
4 | 0ss 4398 | . . 3 ⊢ ∅ ⊆ No | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
6 | elpwi 4611 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
7 | noel 4332 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑥 ∈ ∅ → 𝑥 <s 𝑦) |
9 | 8 | 3ad2ant2 1131 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴) → 𝑥 <s 𝑦) |
10 | 2, 3, 5, 6, 9 | ssltd 27742 | 1 ⊢ (𝐴 ∈ 𝒫 No → ∅ <<s 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Vcvv 3471 ⊆ wss 3947 ∅c0 4324 𝒫 cpw 4604 class class class wbr 5150 No csur 27591 <s cslt 27592 <<s csslt 27731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-xp 5686 df-sslt 27732 |
This theorem is referenced by: bday0s 27779 bday0b 27781 |
Copyright terms: Public domain | W3C validator |