MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulssgt Structured version   Visualization version   GIF version

Theorem nulssgt 27709
Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
nulssgt (𝐴 ∈ 𝒫 No 𝐴 <<s ∅)

Proof of Theorem nulssgt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐴 ∈ 𝒫 No 𝐴 ∈ 𝒫 No )
2 0ex 5246 . . 3 ∅ ∈ V
32a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ∈ V)
4 elpwi 4558 . 2 (𝐴 ∈ 𝒫 No 𝐴 No )
5 0ss 4351 . . 3 ∅ ⊆ No
65a1i 11 . 2 (𝐴 ∈ 𝒫 No → ∅ ⊆ No )
7 noel 4289 . . . 4 ¬ 𝑦 ∈ ∅
87pm2.21i 119 . . 3 (𝑦 ∈ ∅ → 𝑥 <s 𝑦)
983ad2ant3 1135 . 2 ((𝐴 ∈ 𝒫 No 𝑥𝐴𝑦 ∈ ∅) → 𝑥 <s 𝑦)
101, 3, 4, 6, 9ssltd 27702 1 (𝐴 ∈ 𝒫 No 𝐴 <<s ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551   class class class wbr 5092   No csur 27549   <s cslt 27550   <<s csslt 27691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-sslt 27692
This theorem is referenced by:  0sno  27740  1sno  27741  bday0s  27742  0slt1s  27743  bday0b  27744  bday1s  27745  cutneg  27747  lltropt  27786  made0  27787  elons2  28164  onscutlt  28170  onsiso  28174  bdayon  28178  onaddscl  28179  onmulscl  28180  n0scut  28231  n0sbday  28249  n0sfincut  28251  bdayn0p1  28263  zscut  28300  1p1e2s  28308  twocut  28315  addhalfcut  28347
  Copyright terms: Public domain W3C validator