| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nulssgt | Structured version Visualization version GIF version | ||
| Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
| 2 | 0ex 5257 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
| 4 | elpwi 4566 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
| 5 | 0ss 4359 | . . 3 ⊢ ∅ ⊆ No | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
| 7 | noel 4297 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
| 8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
| 10 | 1, 3, 4, 6, 9 | ssltd 27737 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 class class class wbr 5102 No csur 27584 <s cslt 27585 <<s csslt 27726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-sslt 27727 |
| This theorem is referenced by: 0sno 27775 1sno 27776 bday0s 27777 0slt1s 27778 bday0b 27779 bday1s 27780 cutneg 27782 lltropt 27821 made0 27822 elons2 28199 onscutlt 28205 onsiso 28209 bdayon 28213 onaddscl 28214 onmulscl 28215 n0scut 28266 n0sbday 28284 n0sfincut 28286 bdayn0p1 28298 zscut 28335 1p1e2s 28343 twocut 28350 addhalfcut 28382 |
| Copyright terms: Public domain | W3C validator |