| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nulssgt | Structured version Visualization version GIF version | ||
| Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
| 2 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
| 4 | elpwi 4554 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
| 5 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ No | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
| 7 | noel 4285 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
| 8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
| 10 | 1, 3, 4, 6, 9 | ssltd 27731 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 class class class wbr 5089 No csur 27578 <s cslt 27579 <<s csslt 27720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-sslt 27721 |
| This theorem is referenced by: 0sno 27770 1sno 27771 bday0s 27772 0slt1s 27773 bday0b 27774 bday1s 27775 cutneg 27777 rightpos 27782 lltropt 27817 made0 27818 elons2 28195 onscutlt 28201 onsiso 28205 bdayon 28209 onaddscl 28210 onmulscl 28211 n0scut 28262 n0sbday 28280 n0sfincut 28282 bdayn0p1 28294 zscut 28331 1p1e2s 28339 twocut 28346 addhalfcut 28379 |
| Copyright terms: Public domain | W3C validator |