![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nulssgt | Structured version Visualization version GIF version |
Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
2 | 0ex 5304 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
4 | elpwi 4604 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
5 | 0ss 4394 | . . 3 ⊢ ∅ ⊆ No | |
6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
7 | noel 4330 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
9 | 8 | 3ad2ant3 1132 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
10 | 1, 3, 4, 6, 9 | ssltd 27818 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3946 ∅c0 4322 𝒫 cpw 4597 class class class wbr 5145 No csur 27666 <s cslt 27667 <<s csslt 27807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-xp 5680 df-sslt 27808 |
This theorem is referenced by: 0sno 27853 1sno 27854 bday0s 27855 0slt1s 27856 bday0b 27857 bday1s 27858 lltropt 27893 made0 27894 elons2 28249 n0scut 28303 n0sbday 28317 |
Copyright terms: Public domain | W3C validator |