| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nulssgt | Structured version Visualization version GIF version | ||
| Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
| 2 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
| 4 | elpwi 4570 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
| 5 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ No | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
| 7 | noel 4301 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
| 8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
| 10 | 1, 3, 4, 6, 9 | ssltd 27703 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 class class class wbr 5107 No csur 27551 <s cslt 27552 <<s csslt 27692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-sslt 27693 |
| This theorem is referenced by: 0sno 27738 1sno 27739 bday0s 27740 0slt1s 27741 bday0b 27742 bday1s 27743 cutneg 27745 lltropt 27784 made0 27785 elons2 28159 onscutlt 28165 onsiso 28169 bdayon 28173 onaddscl 28174 onmulscl 28175 n0scut 28226 n0sbday 28244 n0sfincut 28246 bdayn0p1 28258 zscut 28295 1p1e2s 28302 twocut 28309 addhalfcut 28334 |
| Copyright terms: Public domain | W3C validator |