![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nulssgt | Structured version Visualization version GIF version |
Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
2 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
4 | elpwi 4629 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
5 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ No | |
6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
7 | noel 4360 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
10 | 1, 3, 4, 6, 9 | ssltd 27854 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 class class class wbr 5166 No csur 27702 <s cslt 27703 <<s csslt 27843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-sslt 27844 |
This theorem is referenced by: 0sno 27889 1sno 27890 bday0s 27891 0slt1s 27892 bday0b 27893 bday1s 27894 lltropt 27929 made0 27930 elons2 28299 onaddscl 28304 onmulscl 28305 n0scut 28356 n0sbday 28372 zscut 28411 1p1e2s 28418 nohalf 28425 addhalfcut 28437 |
Copyright terms: Public domain | W3C validator |