| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nulssgt | Structured version Visualization version GIF version | ||
| Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
| 2 | 0ex 5289 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
| 4 | elpwi 4589 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
| 5 | 0ss 4382 | . . 3 ⊢ ∅ ⊆ No | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
| 7 | noel 4320 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
| 8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
| 10 | 1, 3, 4, 6, 9 | ssltd 27791 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 ∅c0 4315 𝒫 cpw 4582 class class class wbr 5125 No csur 27639 <s cslt 27640 <<s csslt 27780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-sslt 27781 |
| This theorem is referenced by: 0sno 27826 1sno 27827 bday0s 27828 0slt1s 27829 bday0b 27830 bday1s 27831 lltropt 27866 made0 27867 elons2 28236 onaddscl 28241 onmulscl 28242 n0scut 28293 n0sbday 28309 zscut 28348 1p1e2s 28355 nohalf 28362 addhalfcut 28374 |
| Copyright terms: Public domain | W3C validator |