Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nulssgt | Structured version Visualization version GIF version |
Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
2 | 0ex 5235 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
4 | elpwi 4548 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
5 | 0ss 4336 | . . 3 ⊢ ∅ ⊆ No | |
6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
7 | noel 4270 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
9 | 8 | 3ad2ant3 1134 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
10 | 1, 3, 4, 6, 9 | ssltd 33982 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 class class class wbr 5079 No csur 33839 <s cslt 33840 <<s csslt 33971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-sslt 33972 |
This theorem is referenced by: 0sno 34016 1sno 34017 bday0s 34018 0slt1s 34019 bday0b 34020 bday1s 34021 made0 34053 |
Copyright terms: Public domain | W3C validator |