![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nulssgt | Structured version Visualization version GIF version |
Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
2 | 0ex 5313 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
4 | elpwi 4612 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
5 | 0ss 4406 | . . 3 ⊢ ∅ ⊆ No | |
6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
7 | noel 4344 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
9 | 8 | 3ad2ant3 1134 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
10 | 1, 3, 4, 6, 9 | ssltd 27851 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 class class class wbr 5148 No csur 27699 <s cslt 27700 <<s csslt 27840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-sslt 27841 |
This theorem is referenced by: 0sno 27886 1sno 27887 bday0s 27888 0slt1s 27889 bday0b 27890 bday1s 27891 lltropt 27926 made0 27927 elons2 28296 onaddscl 28301 onmulscl 28302 n0scut 28353 n0sbday 28369 zscut 28408 1p1e2s 28415 nohalf 28422 addhalfcut 28434 |
Copyright terms: Public domain | W3C validator |