| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nulssgt | Structured version Visualization version GIF version | ||
| Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) | |
| 2 | 0ex 5246 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ∈ V) |
| 4 | elpwi 4558 | . 2 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
| 5 | 0ss 4351 | . . 3 ⊢ ∅ ⊆ No | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
| 7 | noel 4289 | . . . 4 ⊢ ¬ 𝑦 ∈ ∅ | |
| 8 | 7 | pm2.21i 119 | . . 3 ⊢ (𝑦 ∈ ∅ → 𝑥 <s 𝑦) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅) → 𝑥 <s 𝑦) |
| 10 | 1, 3, 4, 6, 9 | ssltd 27702 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 class class class wbr 5092 No csur 27549 <s cslt 27550 <<s csslt 27691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-sslt 27692 |
| This theorem is referenced by: 0sno 27740 1sno 27741 bday0s 27742 0slt1s 27743 bday0b 27744 bday1s 27745 cutneg 27747 lltropt 27786 made0 27787 elons2 28164 onscutlt 28170 onsiso 28174 bdayon 28178 onaddscl 28179 onmulscl 28180 n0scut 28231 n0sbday 28249 n0sfincut 28251 bdayn0p1 28263 zscut 28300 1p1e2s 28308 twocut 28315 addhalfcut 28347 |
| Copyright terms: Public domain | W3C validator |