MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday0b Structured version   Visualization version   GIF version

Theorem bday0b 27742
Description: The only surreal with birthday is 0s. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
bday0b (𝑋 No → (( bday 𝑋) = ∅ ↔ 𝑋 = 0s ))

Proof of Theorem bday0b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-0s 27736 . . . 4 0s = (∅ |s ∅)
2 snelpwi 5403 . . . . . . 7 (𝑋 No → {𝑋} ∈ 𝒫 No )
3 nulsslt 27709 . . . . . . 7 ({𝑋} ∈ 𝒫 No → ∅ <<s {𝑋})
42, 3syl 17 . . . . . 6 (𝑋 No → ∅ <<s {𝑋})
54adantr 480 . . . . 5 ((𝑋 No ∧ ( bday 𝑋) = ∅) → ∅ <<s {𝑋})
6 nulssgt 27710 . . . . . . 7 ({𝑋} ∈ 𝒫 No → {𝑋} <<s ∅)
72, 6syl 17 . . . . . 6 (𝑋 No → {𝑋} <<s ∅)
87adantr 480 . . . . 5 ((𝑋 No ∧ ( bday 𝑋) = ∅) → {𝑋} <<s ∅)
9 id 22 . . . . . . . . 9 (( bday 𝑋) = ∅ → ( bday 𝑋) = ∅)
10 0ss 4363 . . . . . . . . 9 ∅ ⊆ ( bday 𝑥)
119, 10eqsstrdi 3991 . . . . . . . 8 (( bday 𝑋) = ∅ → ( bday 𝑋) ⊆ ( bday 𝑥))
1211a1d 25 . . . . . . 7 (( bday 𝑋) = ∅ → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))
1312adantl 481 . . . . . 6 ((𝑋 No ∧ ( bday 𝑋) = ∅) → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))
1413ralrimivw 3129 . . . . 5 ((𝑋 No ∧ ( bday 𝑋) = ∅) → ∀𝑥 No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))
15 0elpw 5311 . . . . . . . 8 ∅ ∈ 𝒫 No
16 nulssgt 27710 . . . . . . . 8 (∅ ∈ 𝒫 No → ∅ <<s ∅)
1715, 16ax-mp 5 . . . . . . 7 ∅ <<s ∅
18 eqscut2 27718 . . . . . . 7 ((∅ <<s ∅ ∧ 𝑋 No ) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))))
1917, 18mpan 690 . . . . . 6 (𝑋 No → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))))
2019adantr 480 . . . . 5 ((𝑋 No ∧ ( bday 𝑋) = ∅) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))))
215, 8, 14, 20mpbir3and 1343 . . . 4 ((𝑋 No ∧ ( bday 𝑋) = ∅) → (∅ |s ∅) = 𝑋)
221, 21eqtr2id 2777 . . 3 ((𝑋 No ∧ ( bday 𝑋) = ∅) → 𝑋 = 0s )
2322ex 412 . 2 (𝑋 No → (( bday 𝑋) = ∅ → 𝑋 = 0s ))
24 fveq2 6858 . . 3 (𝑋 = 0s → ( bday 𝑋) = ( bday ‘ 0s ))
25 bday0s 27740 . . 3 ( bday ‘ 0s ) = ∅
2624, 25eqtrdi 2780 . 2 (𝑋 = 0s → ( bday 𝑋) = ∅)
2723, 26impbid1 225 1 (𝑋 No → (( bday 𝑋) = ∅ ↔ 𝑋 = 0s ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   bday cbday 27553   <<s csslt 27692   |s cscut 27694   0s c0s 27734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736
This theorem is referenced by:  bday1s  27743  cuteq1  27746  0elold  27821
  Copyright terms: Public domain W3C validator