MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday0b Structured version   Visualization version   GIF version

Theorem bday0b 27890
Description: The only surreal with birthday is 0s. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
bday0b (𝑋 No → (( bday 𝑋) = ∅ ↔ 𝑋 = 0s ))

Proof of Theorem bday0b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-0s 27884 . . . 4 0s = (∅ |s ∅)
2 snelpwi 5454 . . . . . . 7 (𝑋 No → {𝑋} ∈ 𝒫 No )
3 nulsslt 27857 . . . . . . 7 ({𝑋} ∈ 𝒫 No → ∅ <<s {𝑋})
42, 3syl 17 . . . . . 6 (𝑋 No → ∅ <<s {𝑋})
54adantr 480 . . . . 5 ((𝑋 No ∧ ( bday 𝑋) = ∅) → ∅ <<s {𝑋})
6 nulssgt 27858 . . . . . . 7 ({𝑋} ∈ 𝒫 No → {𝑋} <<s ∅)
72, 6syl 17 . . . . . 6 (𝑋 No → {𝑋} <<s ∅)
87adantr 480 . . . . 5 ((𝑋 No ∧ ( bday 𝑋) = ∅) → {𝑋} <<s ∅)
9 id 22 . . . . . . . . 9 (( bday 𝑋) = ∅ → ( bday 𝑋) = ∅)
10 0ss 4406 . . . . . . . . 9 ∅ ⊆ ( bday 𝑥)
119, 10eqsstrdi 4050 . . . . . . . 8 (( bday 𝑋) = ∅ → ( bday 𝑋) ⊆ ( bday 𝑥))
1211a1d 25 . . . . . . 7 (( bday 𝑋) = ∅ → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))
1312adantl 481 . . . . . 6 ((𝑋 No ∧ ( bday 𝑋) = ∅) → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))
1413ralrimivw 3148 . . . . 5 ((𝑋 No ∧ ( bday 𝑋) = ∅) → ∀𝑥 No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))
15 0elpw 5362 . . . . . . . 8 ∅ ∈ 𝒫 No
16 nulssgt 27858 . . . . . . . 8 (∅ ∈ 𝒫 No → ∅ <<s ∅)
1715, 16ax-mp 5 . . . . . . 7 ∅ <<s ∅
18 eqscut2 27866 . . . . . . 7 ((∅ <<s ∅ ∧ 𝑋 No ) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))))
1917, 18mpan 690 . . . . . 6 (𝑋 No → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))))
2019adantr 480 . . . . 5 ((𝑋 No ∧ ( bday 𝑋) = ∅) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday 𝑋) ⊆ ( bday 𝑥)))))
215, 8, 14, 20mpbir3and 1341 . . . 4 ((𝑋 No ∧ ( bday 𝑋) = ∅) → (∅ |s ∅) = 𝑋)
221, 21eqtr2id 2788 . . 3 ((𝑋 No ∧ ( bday 𝑋) = ∅) → 𝑋 = 0s )
2322ex 412 . 2 (𝑋 No → (( bday 𝑋) = ∅ → 𝑋 = 0s ))
24 fveq2 6907 . . 3 (𝑋 = 0s → ( bday 𝑋) = ( bday ‘ 0s ))
25 bday0s 27888 . . 3 ( bday ‘ 0s ) = ∅
2624, 25eqtrdi 2791 . 2 (𝑋 = 0s → ( bday 𝑋) = ∅)
2723, 26impbid1 225 1 (𝑋 No → (( bday 𝑋) = ∅ ↔ 𝑋 = 0s ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431   No csur 27699   bday cbday 27701   <<s csslt 27840   |s cscut 27842   0s c0s 27882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-0s 27884
This theorem is referenced by:  bday1s  27891  cuteq1  27893  0elold  27962
  Copyright terms: Public domain W3C validator