| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bday0b | Structured version Visualization version GIF version | ||
| Description: The only surreal with birthday ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| bday0b | ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27788 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
| 2 | snelpwi 5418 | . . . . . . 7 ⊢ (𝑋 ∈ No → {𝑋} ∈ 𝒫 No ) | |
| 3 | nulsslt 27761 | . . . . . . 7 ⊢ ({𝑋} ∈ 𝒫 No → ∅ <<s {𝑋}) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ No → ∅ <<s {𝑋}) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ∅ <<s {𝑋}) |
| 6 | nulssgt 27762 | . . . . . . 7 ⊢ ({𝑋} ∈ 𝒫 No → {𝑋} <<s ∅) | |
| 7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ No → {𝑋} <<s ∅) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → {𝑋} <<s ∅) |
| 9 | id 22 | . . . . . . . . 9 ⊢ (( bday ‘𝑋) = ∅ → ( bday ‘𝑋) = ∅) | |
| 10 | 0ss 4375 | . . . . . . . . 9 ⊢ ∅ ⊆ ( bday ‘𝑥) | |
| 11 | 9, 10 | eqsstrdi 4003 | . . . . . . . 8 ⊢ (( bday ‘𝑋) = ∅ → ( bday ‘𝑋) ⊆ ( bday ‘𝑥)) |
| 12 | 11 | a1d 25 | . . . . . . 7 ⊢ (( bday ‘𝑋) = ∅ → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
| 14 | 13 | ralrimivw 3136 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
| 15 | 0elpw 5326 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 No | |
| 16 | nulssgt 27762 | . . . . . . . 8 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ ∅ <<s ∅ |
| 18 | eqscut2 27770 | . . . . . . 7 ⊢ ((∅ <<s ∅ ∧ 𝑋 ∈ No ) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) | |
| 19 | 17, 18 | mpan 690 | . . . . . 6 ⊢ (𝑋 ∈ No → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) |
| 21 | 5, 8, 14, 20 | mpbir3and 1343 | . . . 4 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → (∅ |s ∅) = 𝑋) |
| 22 | 1, 21 | eqtr2id 2783 | . . 3 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → 𝑋 = 0s ) |
| 23 | 22 | ex 412 | . 2 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ → 𝑋 = 0s )) |
| 24 | fveq2 6876 | . . 3 ⊢ (𝑋 = 0s → ( bday ‘𝑋) = ( bday ‘ 0s )) | |
| 25 | bday0s 27792 | . . 3 ⊢ ( bday ‘ 0s ) = ∅ | |
| 26 | 24, 25 | eqtrdi 2786 | . 2 ⊢ (𝑋 = 0s → ( bday ‘𝑋) = ∅) |
| 27 | 23, 26 | impbid1 225 | 1 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 {csn 4601 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 No csur 27603 bday cbday 27605 <<s csslt 27744 |s cscut 27746 0s c0s 27786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sslt 27745 df-scut 27747 df-0s 27788 |
| This theorem is referenced by: bday1s 27795 cuteq1 27798 0elold 27873 |
| Copyright terms: Public domain | W3C validator |