![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bday0b | Structured version Visualization version GIF version |
Description: The only surreal with birthday ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
bday0b | ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0s 27887 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
2 | snelpwi 5463 | . . . . . . 7 ⊢ (𝑋 ∈ No → {𝑋} ∈ 𝒫 No ) | |
3 | nulsslt 27860 | . . . . . . 7 ⊢ ({𝑋} ∈ 𝒫 No → ∅ <<s {𝑋}) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ No → ∅ <<s {𝑋}) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ∅ <<s {𝑋}) |
6 | nulssgt 27861 | . . . . . . 7 ⊢ ({𝑋} ∈ 𝒫 No → {𝑋} <<s ∅) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ No → {𝑋} <<s ∅) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → {𝑋} <<s ∅) |
9 | id 22 | . . . . . . . . 9 ⊢ (( bday ‘𝑋) = ∅ → ( bday ‘𝑋) = ∅) | |
10 | 0ss 4423 | . . . . . . . . 9 ⊢ ∅ ⊆ ( bday ‘𝑥) | |
11 | 9, 10 | eqsstrdi 4063 | . . . . . . . 8 ⊢ (( bday ‘𝑋) = ∅ → ( bday ‘𝑋) ⊆ ( bday ‘𝑥)) |
12 | 11 | a1d 25 | . . . . . . 7 ⊢ (( bday ‘𝑋) = ∅ → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
14 | 13 | ralrimivw 3156 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
15 | 0elpw 5374 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 No | |
16 | nulssgt 27861 | . . . . . . . 8 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ ∅ <<s ∅ |
18 | eqscut2 27869 | . . . . . . 7 ⊢ ((∅ <<s ∅ ∧ 𝑋 ∈ No ) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) | |
19 | 17, 18 | mpan 689 | . . . . . 6 ⊢ (𝑋 ∈ No → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) |
21 | 5, 8, 14, 20 | mpbir3and 1342 | . . . 4 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → (∅ |s ∅) = 𝑋) |
22 | 1, 21 | eqtr2id 2793 | . . 3 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → 𝑋 = 0s ) |
23 | 22 | ex 412 | . 2 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ → 𝑋 = 0s )) |
24 | fveq2 6920 | . . 3 ⊢ (𝑋 = 0s → ( bday ‘𝑋) = ( bday ‘ 0s )) | |
25 | bday0s 27891 | . . 3 ⊢ ( bday ‘ 0s ) = ∅ | |
26 | 24, 25 | eqtrdi 2796 | . 2 ⊢ (𝑋 = 0s → ( bday ‘𝑋) = ∅) |
27 | 23, 26 | impbid1 225 | 1 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 No csur 27702 bday cbday 27704 <<s csslt 27843 |s cscut 27845 0s c0s 27885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-0s 27887 |
This theorem is referenced by: bday1s 27894 cuteq1 27896 0elold 27965 |
Copyright terms: Public domain | W3C validator |