| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bday0b | Structured version Visualization version GIF version | ||
| Description: The only surreal with birthday ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| bday0b | ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27738 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
| 2 | snelpwi 5386 | . . . . . . 7 ⊢ (𝑋 ∈ No → {𝑋} ∈ 𝒫 No ) | |
| 3 | nulsslt 27708 | . . . . . . 7 ⊢ ({𝑋} ∈ 𝒫 No → ∅ <<s {𝑋}) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ No → ∅ <<s {𝑋}) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ∅ <<s {𝑋}) |
| 6 | nulssgt 27709 | . . . . . . 7 ⊢ ({𝑋} ∈ 𝒫 No → {𝑋} <<s ∅) | |
| 7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ No → {𝑋} <<s ∅) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → {𝑋} <<s ∅) |
| 9 | id 22 | . . . . . . . . 9 ⊢ (( bday ‘𝑋) = ∅ → ( bday ‘𝑋) = ∅) | |
| 10 | 0ss 4351 | . . . . . . . . 9 ⊢ ∅ ⊆ ( bday ‘𝑥) | |
| 11 | 9, 10 | eqsstrdi 3980 | . . . . . . . 8 ⊢ (( bday ‘𝑋) = ∅ → ( bday ‘𝑋) ⊆ ( bday ‘𝑥)) |
| 12 | 11 | a1d 25 | . . . . . . 7 ⊢ (( bday ‘𝑋) = ∅ → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
| 14 | 13 | ralrimivw 3125 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
| 15 | 0elpw 5295 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 No | |
| 16 | nulssgt 27709 | . . . . . . . 8 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ ∅ <<s ∅ |
| 18 | eqscut2 27717 | . . . . . . 7 ⊢ ((∅ <<s ∅ ∧ 𝑋 ∈ No ) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) | |
| 19 | 17, 18 | mpan 690 | . . . . . 6 ⊢ (𝑋 ∈ No → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) |
| 20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) |
| 21 | 5, 8, 14, 20 | mpbir3and 1343 | . . . 4 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → (∅ |s ∅) = 𝑋) |
| 22 | 1, 21 | eqtr2id 2777 | . . 3 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → 𝑋 = 0s ) |
| 23 | 22 | ex 412 | . 2 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ → 𝑋 = 0s )) |
| 24 | fveq2 6822 | . . 3 ⊢ (𝑋 = 0s → ( bday ‘𝑋) = ( bday ‘ 0s )) | |
| 25 | bday0s 27742 | . . 3 ⊢ ( bday ‘ 0s ) = ∅ | |
| 26 | 24, 25 | eqtrdi 2780 | . 2 ⊢ (𝑋 = 0s → ( bday ‘𝑋) = ∅) |
| 27 | 23, 26 | impbid1 225 | 1 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 No csur 27549 bday cbday 27551 <<s csslt 27691 |s cscut 27693 0s c0s 27736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sslt 27692 df-scut 27694 df-0s 27738 |
| This theorem is referenced by: bday1s 27745 cuteq1 27748 0elold 27824 |
| Copyright terms: Public domain | W3C validator |