Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bday0b | Structured version Visualization version GIF version |
Description: The only surreal with birthday ∅ is 0s. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
bday0b | ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0s 33578 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
2 | snelpwi 5305 | . . . . . . 7 ⊢ (𝑋 ∈ No → {𝑋} ∈ 𝒫 No ) | |
3 | nulsslt 33554 | . . . . . . 7 ⊢ ({𝑋} ∈ 𝒫 No → ∅ <<s {𝑋}) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ No → ∅ <<s {𝑋}) |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ∅ <<s {𝑋}) |
6 | nulssgt 33555 | . . . . . . 7 ⊢ ({𝑋} ∈ 𝒫 No → {𝑋} <<s ∅) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ No → {𝑋} <<s ∅) |
8 | 7 | adantr 484 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → {𝑋} <<s ∅) |
9 | id 22 | . . . . . . . . 9 ⊢ (( bday ‘𝑋) = ∅ → ( bday ‘𝑋) = ∅) | |
10 | 0ss 4292 | . . . . . . . . 9 ⊢ ∅ ⊆ ( bday ‘𝑥) | |
11 | 9, 10 | eqsstrdi 3946 | . . . . . . . 8 ⊢ (( bday ‘𝑋) = ∅ → ( bday ‘𝑋) ⊆ ( bday ‘𝑥)) |
12 | 11 | a1d 25 | . . . . . . 7 ⊢ (( bday ‘𝑋) = ∅ → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
13 | 12 | adantl 485 | . . . . . 6 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
14 | 13 | ralrimivw 3114 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))) |
15 | 0elpw 5224 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 No | |
16 | nulssgt 33555 | . . . . . . . 8 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
17 | 15, 16 | ax-mp 5 | . . . . . . 7 ⊢ ∅ <<s ∅ |
18 | eqscut2 33561 | . . . . . . 7 ⊢ ((∅ <<s ∅ ∧ 𝑋 ∈ No ) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) | |
19 | 17, 18 | mpan 689 | . . . . . 6 ⊢ (𝑋 ∈ No → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) |
20 | 19 | adantr 484 | . . . . 5 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → ((∅ |s ∅) = 𝑋 ↔ (∅ <<s {𝑋} ∧ {𝑋} <<s ∅ ∧ ∀𝑥 ∈ No ((∅ <<s {𝑥} ∧ {𝑥} <<s ∅) → ( bday ‘𝑋) ⊆ ( bday ‘𝑥))))) |
21 | 5, 8, 14, 20 | mpbir3and 1339 | . . . 4 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → (∅ |s ∅) = 𝑋) |
22 | 1, 21 | syl5req 2806 | . . 3 ⊢ ((𝑋 ∈ No ∧ ( bday ‘𝑋) = ∅) → 𝑋 = 0s ) |
23 | 22 | ex 416 | . 2 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ → 𝑋 = 0s )) |
24 | fveq2 6658 | . . 3 ⊢ (𝑋 = 0s → ( bday ‘𝑋) = ( bday ‘ 0s )) | |
25 | bday0s 33582 | . . 3 ⊢ ( bday ‘ 0s ) = ∅ | |
26 | 24, 25 | eqtrdi 2809 | . 2 ⊢ (𝑋 = 0s → ( bday ‘𝑋) = ∅) |
27 | 23, 26 | impbid1 228 | 1 ⊢ (𝑋 ∈ No → (( bday ‘𝑋) = ∅ ↔ 𝑋 = 0s )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⊆ wss 3858 ∅c0 4225 𝒫 cpw 4494 {csn 4522 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 No csur 33408 bday cbday 33410 <<s csslt 33540 |s cscut 33542 0s c0s 33576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1o 8112 df-2o 8113 df-no 33411 df-slt 33412 df-bday 33413 df-sslt 33541 df-scut 33543 df-0s 33578 |
This theorem is referenced by: bday1s 33585 |
Copyright terms: Public domain | W3C validator |