Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssslt2 Structured version   Visualization version   GIF version

Theorem sssslt2 33676
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 <<s 𝐶)

Proof of Theorem sssslt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33667 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 484 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 ∈ V)
3 ssltex2 33668 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
43adantr 484 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐵 ∈ V)
5 simpr 488 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶𝐵)
64, 5ssexd 5202 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶 ∈ V)
7 ssltss1 33669 . . . 4 (𝐴 <<s 𝐵𝐴 No )
87adantr 484 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 No )
9 ssltss2 33670 . . . . 5 (𝐴 <<s 𝐵𝐵 No )
109adantr 484 . . . 4 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐵 No )
115, 10sstrd 3897 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶 No )
12 ssltsep 33671 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
13 ssralv 3953 . . . . 5 (𝐶𝐵 → (∀𝑦𝐵 𝑥 <s 𝑦 → ∀𝑦𝐶 𝑥 <s 𝑦))
1413ralimdv 3091 . . . 4 (𝐶𝐵 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦))
1512, 14mpan9 510 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)
168, 11, 153jca 1130 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦))
17 brsslt 33666 . 2 (𝐴 <<s 𝐶 ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)))
182, 6, 16, 17syl21anbrc 1346 1 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2112  wral 3051  Vcvv 3398  wss 3853   class class class wbr 5039   No csur 33529   <s cslt 33530   <<s csslt 33661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-xp 5542  df-sslt 33662
This theorem is referenced by:  scutun12  33690
  Copyright terms: Public domain W3C validator