Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssslt2 Structured version   Visualization version   GIF version

Theorem sssslt2 33990
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 <<s 𝐶)

Proof of Theorem sssslt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33981 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 481 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 ∈ V)
3 ssltex2 33982 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
43adantr 481 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐵 ∈ V)
5 simpr 485 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶𝐵)
64, 5ssexd 5248 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶 ∈ V)
7 ssltss1 33983 . . . 4 (𝐴 <<s 𝐵𝐴 No )
87adantr 481 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 No )
9 ssltss2 33984 . . . . 5 (𝐴 <<s 𝐵𝐵 No )
109adantr 481 . . . 4 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐵 No )
115, 10sstrd 3931 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶 No )
12 ssltsep 33985 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
13 ssralv 3987 . . . . 5 (𝐶𝐵 → (∀𝑦𝐵 𝑥 <s 𝑦 → ∀𝑦𝐶 𝑥 <s 𝑦))
1413ralimdv 3109 . . . 4 (𝐶𝐵 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦))
1512, 14mpan9 507 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)
168, 11, 153jca 1127 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦))
17 brsslt 33980 . 2 (𝐴 <<s 𝐶 ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)))
182, 6, 16, 17syl21anbrc 1343 1 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074   No csur 33843   <s cslt 33844   <<s csslt 33975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-sslt 33976
This theorem is referenced by:  scutun12  34004
  Copyright terms: Public domain W3C validator