Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sssslt2 | Structured version Visualization version GIF version |
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.) |
Ref | Expression |
---|---|
sssslt2 | ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltex1 33908 | . . 3 ⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ∈ V) |
3 | ssltex2 33909 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐵 ∈ V) |
5 | simpr 484 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ⊆ 𝐵) | |
6 | 4, 5 | ssexd 5243 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ∈ V) |
7 | ssltss1 33910 | . . . 4 ⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ⊆ No ) |
9 | ssltss2 33911 | . . . . 5 ⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No ) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐵 ⊆ No ) |
11 | 5, 10 | sstrd 3927 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ⊆ No ) |
12 | ssltsep 33912 | . . . 4 ⊢ (𝐴 <<s 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | |
13 | ssralv 3983 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 → ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦)) | |
14 | 13 | ralimdv 3103 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦)) |
15 | 12, 14 | mpan9 506 | . . 3 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦) |
16 | 8, 11, 15 | 3jca 1126 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → (𝐴 ⊆ No ∧ 𝐶 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦)) |
17 | brsslt 33907 | . 2 ⊢ (𝐴 <<s 𝐶 ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐶 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑥 <s 𝑦))) | |
18 | 2, 6, 16, 17 | syl21anbrc 1342 | 1 ⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 ⊆ 𝐵) → 𝐴 <<s 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 No csur 33770 <s cslt 33771 <<s csslt 33902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-sslt 33903 |
This theorem is referenced by: scutun12 33931 |
Copyright terms: Public domain | W3C validator |