Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssslt2 Structured version   Visualization version   GIF version

Theorem sssslt2 33254
Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 <<s 𝐶)

Proof of Theorem sssslt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 33248 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 483 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 ∈ V)
3 ssltex2 33249 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
43adantr 483 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐵 ∈ V)
5 simpr 487 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶𝐵)
64, 5ssexd 5219 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶 ∈ V)
7 ssltss1 33250 . . . 4 (𝐴 <<s 𝐵𝐴 No )
87adantr 483 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 No )
9 ssltss2 33251 . . . . 5 (𝐴 <<s 𝐵𝐵 No )
109adantr 483 . . . 4 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐵 No )
115, 10sstrd 3975 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶 No )
12 ssltsep 33252 . . . . 5 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
1312adantr 483 . . . 4 ((𝐴 <<s 𝐵𝐶𝐵) → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
14 ssralv 4031 . . . . . 6 (𝐶𝐵 → (∀𝑦𝐵 𝑥 <s 𝑦 → ∀𝑦𝐶 𝑥 <s 𝑦))
155, 14syl 17 . . . . 5 ((𝐴 <<s 𝐵𝐶𝐵) → (∀𝑦𝐵 𝑥 <s 𝑦 → ∀𝑦𝐶 𝑥 <s 𝑦))
1615ralimdv 3176 . . . 4 ((𝐴 <<s 𝐵𝐶𝐵) → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦))
1713, 16mpd 15 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)
188, 11, 173jca 1123 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦))
19 brsslt 33247 . 2 (𝐴 <<s 𝐶 ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)))
202, 6, 18, 19syl21anbrc 1339 1 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082  wcel 2108  wral 3136  Vcvv 3493  wss 3934   class class class wbr 5057   No csur 33140   <s cslt 33141   <<s csslt 33243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-br 5058  df-opab 5120  df-xp 5554  df-sslt 33244
This theorem is referenced by:  scutun12  33264
  Copyright terms: Public domain W3C validator