MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sssslt2 Structured version   Visualization version   GIF version

Theorem sssslt2 27760
Description: Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
sssslt2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 <<s 𝐶)

Proof of Theorem sssslt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 27750 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
21adantr 480 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 ∈ V)
3 ssltex2 27751 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
43adantr 480 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐵 ∈ V)
5 simpr 484 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶𝐵)
64, 5ssexd 5294 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶 ∈ V)
7 ssltss1 27752 . . . 4 (𝐴 <<s 𝐵𝐴 No )
87adantr 480 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 No )
9 ssltss2 27753 . . . . 5 (𝐴 <<s 𝐵𝐵 No )
109adantr 480 . . . 4 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐵 No )
115, 10sstrd 3969 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐶 No )
12 ssltsep 27754 . . . 4 (𝐴 <<s 𝐵 → ∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦)
13 ssralv 4027 . . . . 5 (𝐶𝐵 → (∀𝑦𝐵 𝑥 <s 𝑦 → ∀𝑦𝐶 𝑥 <s 𝑦))
1413ralimdv 3154 . . . 4 (𝐶𝐵 → (∀𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦))
1512, 14mpan9 506 . . 3 ((𝐴 <<s 𝐵𝐶𝐵) → ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)
168, 11, 153jca 1128 . 2 ((𝐴 <<s 𝐵𝐶𝐵) → (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦))
17 brsslt 27749 . 2 (𝐴 <<s 𝐶 ↔ ((𝐴 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴 No 𝐶 No ∧ ∀𝑥𝐴𝑦𝐶 𝑥 <s 𝑦)))
182, 6, 16, 17syl21anbrc 1345 1 ((𝐴 <<s 𝐵𝐶𝐵) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2108  wral 3051  Vcvv 3459  wss 3926   class class class wbr 5119   No csur 27603   <s cslt 27604   <<s csslt 27744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-sslt 27745
This theorem is referenced by:  scutun12  27774  cutmin  27895
  Copyright terms: Public domain W3C validator