| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofmresval | Structured version Visualization version GIF version | ||
| Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
| Ref | Expression |
|---|---|
| ofmresval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| ofmresval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ofmresval | ⊢ (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘f 𝑅𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofmresval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
| 2 | ofmresval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 3 | ovres 7512 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐵) → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘f 𝑅𝐺)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘f 𝑅𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 × cxp 5612 ↾ cres 5616 (class class class)co 7346 ∘f cof 7608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: psradd 21874 dchrmul 27186 ldualvadd 39176 |
| Copyright terms: Public domain | W3C validator |