Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofmresval | Structured version Visualization version GIF version |
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ofmresval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
ofmresval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
ofmresval | ⊢ (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘f 𝑅𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofmresval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
2 | ofmresval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | ovres 7416 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐵) → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘f 𝑅𝐺)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘f 𝑅𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 × cxp 5578 ↾ cres 5582 (class class class)co 7255 ∘f cof 7509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-res 5592 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: psradd 21061 dchrmul 26301 ldualvadd 37070 |
Copyright terms: Public domain | W3C validator |