MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmresval Structured version   Visualization version   GIF version

Theorem ofmresval 7527
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresval.f (𝜑𝐹𝐴)
ofmresval.g (𝜑𝐺𝐵)
Assertion
Ref Expression
ofmresval (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))

Proof of Theorem ofmresval
StepHypRef Expression
1 ofmresval.f . 2 (𝜑𝐹𝐴)
2 ofmresval.g . 2 (𝜑𝐺𝐵)
3 ovres 7416 . 2 ((𝐹𝐴𝐺𝐵) → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))
41, 2, 3syl2anc 583 1 (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   × cxp 5578  cres 5582  (class class class)co 7255  f cof 7509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  psradd  21061  dchrmul  26301  ldualvadd  37070
  Copyright terms: Public domain W3C validator