MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmresval Structured version   Visualization version   GIF version

Theorem ofmresval 7713
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresval.f (𝜑𝐹𝐴)
ofmresval.g (𝜑𝐺𝐵)
Assertion
Ref Expression
ofmresval (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))

Proof of Theorem ofmresval
StepHypRef Expression
1 ofmresval.f . 2 (𝜑𝐹𝐴)
2 ofmresval.g . 2 (𝜑𝐺𝐵)
3 ovres 7599 . 2 ((𝐹𝐴𝐺𝐵) → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   × cxp 5687  cres 5691  (class class class)co 7431  f cof 7695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-res 5701  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  psradd  21975  dchrmul  27307  ldualvadd  39111
  Copyright terms: Public domain W3C validator