![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofmresval | Structured version Visualization version GIF version |
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ofmresval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
ofmresval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
ofmresval | ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofmresval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
2 | ofmresval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
3 | ovres 7065 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐵) → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) | |
4 | 1, 2, 3 | syl2anc 579 | 1 ⊢ (𝜑 → (𝐹( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹 ∘𝑓 𝑅𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 × cxp 5344 ↾ cres 5348 (class class class)co 6910 ∘𝑓 cof 7160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-xp 5352 df-res 5358 df-iota 6090 df-fv 6135 df-ov 6913 |
This theorem is referenced by: psradd 19750 dchrmul 25393 ldualvadd 35203 |
Copyright terms: Public domain | W3C validator |