MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmresval Structured version   Visualization version   GIF version

Theorem ofmresval 7591
Description: Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresval.f (𝜑𝐹𝐴)
ofmresval.g (𝜑𝐺𝐵)
Assertion
Ref Expression
ofmresval (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))

Proof of Theorem ofmresval
StepHypRef Expression
1 ofmresval.f . 2 (𝜑𝐹𝐴)
2 ofmresval.g . 2 (𝜑𝐺𝐵)
3 ovres 7480 . 2 ((𝐹𝐴𝐺𝐵) → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐹( ∘f 𝑅 ↾ (𝐴 × 𝐵))𝐺) = (𝐹f 𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105   × cxp 5606  cres 5610  (class class class)co 7317  f cof 7573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-xp 5614  df-res 5620  df-iota 6418  df-fv 6474  df-ov 7320
This theorem is referenced by:  psradd  21234  dchrmul  26479  ldualvadd  37363
  Copyright terms: Public domain W3C validator