![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfvof | Structured version Visualization version GIF version |
Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
fnfvof | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 765 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐹 Fn 𝐴) | |
2 | simplr 767 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) | |
3 | simpr 485 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
4 | inidm 4218 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
5 | eqidd 2733 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐹‘𝑋)) | |
6 | eqidd 2733 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
7 | 1, 2, 3, 3, 4, 5, 6 | ofval 7680 | . 2 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
8 | 7 | anasss 467 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Fn wfn 6538 ‘cfv 6543 (class class class)co 7408 ∘f cof 7667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 |
This theorem is referenced by: suppofssd 8187 ofccat 14915 ghmplusg 19713 lcomfsupp 20511 lmhmplusg 20654 frlmvplusgvalc 21321 frlmvscaval 21322 frlmsslsp 21350 frlmup1 21352 frlmup2 21353 islindf4 21392 evlslem3 21642 evlslem1 21644 coe1addfv 21786 evl1addd 21859 evl1subd 21860 evl1muld 21861 mamudi 21902 mamudir 21903 mdetrlin 22103 nmotri 24255 mdegaddle 25591 ply1rem 25680 fta1glem2 25683 fta1blem 25685 plyexmo 25825 ulmdvlem1 25911 jensen 26490 dchrmulcl 26749 dchrinv 26761 sumdchr2 26770 dchr2sum 26773 evlsaddval 41142 evlsmulval 41143 evladdval 41149 evlmulval 41150 mzpsubst 41476 mzpcong 41701 rngunsnply 41905 ofoafg 42094 ofoafo 42096 ofoaid1 42098 ofoaid2 42099 ofoaass 42100 ofoacom 42101 naddcnff 42102 naddcnffo 42104 naddcnfcom 42106 naddcnfid1 42107 naddcnfass 42109 lincsum 47100 |
Copyright terms: Public domain | W3C validator |