MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvof Structured version   Visualization version   GIF version

Theorem fnfvof 7714
Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
fnfvof (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))

Proof of Theorem fnfvof
StepHypRef Expression
1 simpll 767 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐹 Fn 𝐴)
2 simplr 769 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
3 simpr 484 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐴𝑉)
4 inidm 4227 . . 3 (𝐴𝐴) = 𝐴
5 eqidd 2738 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐹𝑋))
6 eqidd 2738 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐺𝑋) = (𝐺𝑋))
71, 2, 3, 3, 4, 5, 6ofval 7708 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
87anasss 466 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   Fn wfn 6556  cfv 6561  (class class class)co 7431  f cof 7695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697
This theorem is referenced by:  suppofssd  8228  ofccat  15008  ghmplusg  19864  lcomfsupp  20900  lmhmplusg  21043  frlmvplusgvalc  21787  frlmvscaval  21788  frlmsslsp  21816  frlmup1  21818  frlmup2  21819  islindf4  21858  evlslem3  22104  evlslem1  22106  coe1addfv  22268  evl1addd  22345  evl1subd  22346  evl1muld  22347  mamudi  22407  mamudir  22408  mdetrlin  22608  nmotri  24760  mdegaddle  26113  ply1rem  26205  fta1glem2  26208  fta1blem  26210  plyexmo  26355  ulmdvlem1  26443  jensen  27032  dchrmulcl  27293  dchrinv  27305  sumdchr2  27314  dchr2sum  27317  evlsaddval  42578  evlsmulval  42579  evladdval  42585  evlmulval  42586  mzpsubst  42759  mzpcong  42984  rngunsnply  43181  ofoafg  43367  ofoafo  43369  ofoaid1  43371  ofoaid2  43372  ofoaass  43373  ofoacom  43374  naddcnff  43375  naddcnffo  43377  naddcnfcom  43379  naddcnfid1  43380  naddcnfass  43382  lincsum  48346
  Copyright terms: Public domain W3C validator