MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvof Structured version   Visualization version   GIF version

Theorem fnfvof 7687
Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
fnfvof (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))

Proof of Theorem fnfvof
StepHypRef Expression
1 simpll 766 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐹 Fn 𝐴)
2 simplr 768 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
3 simpr 486 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐴𝑉)
4 inidm 4219 . . 3 (𝐴𝐴) = 𝐴
5 eqidd 2734 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐹𝑋))
6 eqidd 2734 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐺𝑋) = (𝐺𝑋))
71, 2, 3, 3, 4, 5, 6ofval 7681 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
87anasss 468 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107   Fn wfn 6539  cfv 6544  (class class class)co 7409  f cof 7668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670
This theorem is referenced by:  suppofssd  8188  ofccat  14916  ghmplusg  19714  lcomfsupp  20512  lmhmplusg  20655  frlmvplusgvalc  21322  frlmvscaval  21323  frlmsslsp  21351  frlmup1  21353  frlmup2  21354  islindf4  21393  evlslem3  21643  evlslem1  21645  coe1addfv  21787  evl1addd  21860  evl1subd  21861  evl1muld  21862  mamudi  21903  mamudir  21904  mdetrlin  22104  nmotri  24256  mdegaddle  25592  ply1rem  25681  fta1glem2  25684  fta1blem  25686  plyexmo  25826  ulmdvlem1  25912  jensen  26493  dchrmulcl  26752  dchrinv  26764  sumdchr2  26773  dchr2sum  26776  evlsaddval  41140  evlsmulval  41141  evladdval  41147  evlmulval  41148  mzpsubst  41486  mzpcong  41711  rngunsnply  41915  ofoafg  42104  ofoafo  42106  ofoaid1  42108  ofoaid2  42109  ofoaass  42110  ofoacom  42111  naddcnff  42112  naddcnffo  42114  naddcnfcom  42116  naddcnfid1  42117  naddcnfass  42119  lincsum  47110
  Copyright terms: Public domain W3C validator