MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvof Structured version   Visualization version   GIF version

Theorem fnfvof 7731
Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
fnfvof (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))

Proof of Theorem fnfvof
StepHypRef Expression
1 simpll 766 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐹 Fn 𝐴)
2 simplr 768 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
3 simpr 484 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐴𝑉)
4 inidm 4248 . . 3 (𝐴𝐴) = 𝐴
5 eqidd 2741 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐹𝑋))
6 eqidd 2741 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐺𝑋) = (𝐺𝑋))
71, 2, 3, 3, 4, 5, 6ofval 7725 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
87anasss 466 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   Fn wfn 6568  cfv 6573  (class class class)co 7448  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  suppofssd  8244  ofccat  15018  ghmplusg  19888  lcomfsupp  20922  lmhmplusg  21066  frlmvplusgvalc  21810  frlmvscaval  21811  frlmsslsp  21839  frlmup1  21841  frlmup2  21842  islindf4  21881  evlslem3  22127  evlslem1  22129  coe1addfv  22289  evl1addd  22366  evl1subd  22367  evl1muld  22368  mamudi  22428  mamudir  22429  mdetrlin  22629  nmotri  24781  mdegaddle  26133  ply1rem  26225  fta1glem2  26228  fta1blem  26230  plyexmo  26373  ulmdvlem1  26461  jensen  27050  dchrmulcl  27311  dchrinv  27323  sumdchr2  27332  dchr2sum  27335  evlsaddval  42523  evlsmulval  42524  evladdval  42530  evlmulval  42531  mzpsubst  42704  mzpcong  42929  rngunsnply  43130  ofoafg  43316  ofoafo  43318  ofoaid1  43320  ofoaid2  43321  ofoaass  43322  ofoacom  43323  naddcnff  43324  naddcnffo  43326  naddcnfcom  43328  naddcnfid1  43329  naddcnfass  43331  lincsum  48158
  Copyright terms: Public domain W3C validator