MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvof Structured version   Visualization version   GIF version

Theorem fnfvof 7528
Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
fnfvof (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))

Proof of Theorem fnfvof
StepHypRef Expression
1 simpll 763 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐹 Fn 𝐴)
2 simplr 765 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
3 simpr 484 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐴𝑉)
4 inidm 4149 . . 3 (𝐴𝐴) = 𝐴
5 eqidd 2739 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐹𝑋))
6 eqidd 2739 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐺𝑋) = (𝐺𝑋))
71, 2, 3, 3, 4, 5, 6ofval 7522 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
87anasss 466 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   Fn wfn 6413  cfv 6418  (class class class)co 7255  f cof 7509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511
This theorem is referenced by:  suppofssd  7990  ofccat  14608  ghmplusg  19362  lcomfsupp  20078  lmhmplusg  20221  frlmvplusgvalc  20884  frlmvscaval  20885  frlmsslsp  20913  frlmup1  20915  frlmup2  20916  islindf4  20955  evlslem3  21200  evlslem1  21202  coe1addfv  21346  evl1addd  21417  evl1subd  21418  evl1muld  21419  mamudi  21460  mamudir  21461  mdetrlin  21659  nmotri  23809  mdegaddle  25144  ply1rem  25233  fta1glem2  25236  fta1blem  25238  plyexmo  25378  ulmdvlem1  25464  jensen  26043  dchrmulcl  26302  dchrinv  26314  sumdchr2  26323  dchr2sum  26326  evlsaddval  40200  evlsmulval  40201  mzpsubst  40486  mzpcong  40710  rngunsnply  40914  lincsum  45658
  Copyright terms: Public domain W3C validator