| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvof | Structured version Visualization version GIF version | ||
| Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| fnfvof | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐹 Fn 𝐴) | |
| 2 | simplr 768 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 4 | inidm 4176 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 5 | eqidd 2734 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐹‘𝑋)) | |
| 6 | eqidd 2734 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
| 7 | 1, 2, 3, 3, 4, 5, 6 | ofval 7627 | . 2 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 8 | 7 | anasss 466 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 |
| This theorem is referenced by: suppofssd 8139 ofccat 14878 ghmplusg 19760 lcomfsupp 20837 lmhmplusg 20980 frlmvplusgvalc 21706 frlmvscaval 21707 frlmsslsp 21735 frlmup1 21737 frlmup2 21738 islindf4 21777 evlslem3 22016 evlslem1 22018 coe1addfv 22180 evl1addd 22257 evl1subd 22258 evl1muld 22259 mamudi 22319 mamudir 22320 mdetrlin 22518 nmotri 24655 mdegaddle 26007 ply1rem 26099 fta1glem2 26102 fta1blem 26104 plyexmo 26249 ulmdvlem1 26337 jensen 26927 dchrmulcl 27188 dchrinv 27200 sumdchr2 27209 dchr2sum 27212 mplvrpmmhm 33594 mplvrpmrhm 33595 esplyind 33613 evlsaddval 42686 evlsmulval 42687 evladdval 42693 evlmulval 42694 mzpsubst 42865 mzpcong 43089 rngunsnply 43286 ofoafg 43471 ofoafo 43473 ofoaid1 43475 ofoaid2 43476 ofoaass 43477 ofoacom 43478 naddcnff 43479 naddcnffo 43481 naddcnfcom 43483 naddcnfid1 43484 naddcnfass 43486 nthrucw 47008 cjnpoly 47013 lincsum 48554 |
| Copyright terms: Public domain | W3C validator |