| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvof | Structured version Visualization version GIF version | ||
| Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| fnfvof | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐹 Fn 𝐴) | |
| 2 | simplr 768 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 4 | inidm 4180 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 5 | eqidd 2730 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐹‘𝑋)) | |
| 6 | eqidd 2730 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
| 7 | 1, 2, 3, 3, 4, 5, 6 | ofval 7628 | . 2 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 8 | 7 | anasss 466 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 |
| This theorem is referenced by: suppofssd 8143 ofccat 14894 ghmplusg 19743 lcomfsupp 20823 lmhmplusg 20966 frlmvplusgvalc 21692 frlmvscaval 21693 frlmsslsp 21721 frlmup1 21723 frlmup2 21724 islindf4 21763 evlslem3 22003 evlslem1 22005 coe1addfv 22167 evl1addd 22244 evl1subd 22245 evl1muld 22246 mamudi 22306 mamudir 22307 mdetrlin 22505 nmotri 24643 mdegaddle 25995 ply1rem 26087 fta1glem2 26090 fta1blem 26092 plyexmo 26237 ulmdvlem1 26325 jensen 26915 dchrmulcl 27176 dchrinv 27188 sumdchr2 27197 dchr2sum 27200 evlsaddval 42541 evlsmulval 42542 evladdval 42548 evlmulval 42549 mzpsubst 42721 mzpcong 42945 rngunsnply 43142 ofoafg 43327 ofoafo 43329 ofoaid1 43331 ofoaid2 43332 ofoaass 43333 ofoacom 43334 naddcnff 43335 naddcnffo 43337 naddcnfcom 43339 naddcnfid1 43340 naddcnfass 43342 cjnpoly 46874 lincsum 48415 |
| Copyright terms: Public domain | W3C validator |