| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvof | Structured version Visualization version GIF version | ||
| Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| fnfvof | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐹 Fn 𝐴) | |
| 2 | simplr 768 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 4 | inidm 4190 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 5 | eqidd 2730 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐹‘𝑋)) | |
| 6 | eqidd 2730 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
| 7 | 1, 2, 3, 3, 4, 5, 6 | ofval 7664 | . 2 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 8 | 7 | anasss 466 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 |
| This theorem is referenced by: suppofssd 8182 ofccat 14935 ghmplusg 19776 lcomfsupp 20808 lmhmplusg 20951 frlmvplusgvalc 21676 frlmvscaval 21677 frlmsslsp 21705 frlmup1 21707 frlmup2 21708 islindf4 21747 evlslem3 21987 evlslem1 21989 coe1addfv 22151 evl1addd 22228 evl1subd 22229 evl1muld 22230 mamudi 22290 mamudir 22291 mdetrlin 22489 nmotri 24627 mdegaddle 25979 ply1rem 26071 fta1glem2 26074 fta1blem 26076 plyexmo 26221 ulmdvlem1 26309 jensen 26899 dchrmulcl 27160 dchrinv 27172 sumdchr2 27181 dchr2sum 27184 evlsaddval 42556 evlsmulval 42557 evladdval 42563 evlmulval 42564 mzpsubst 42736 mzpcong 42961 rngunsnply 43158 ofoafg 43343 ofoafo 43345 ofoaid1 43347 ofoaid2 43348 ofoaass 43349 ofoacom 43350 naddcnff 43351 naddcnffo 43353 naddcnfcom 43355 naddcnfid1 43356 naddcnfass 43358 cjnpoly 46890 lincsum 48418 |
| Copyright terms: Public domain | W3C validator |