![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfvof | Structured version Visualization version GIF version |
Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
fnfvof | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐹 Fn 𝐴) | |
2 | simplr 768 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) | |
3 | simpr 484 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
4 | inidm 4248 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
5 | eqidd 2741 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐹‘𝑋)) | |
6 | eqidd 2741 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
7 | 1, 2, 3, 3, 4, 5, 6 | ofval 7725 | . 2 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
8 | 7 | anasss 466 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 |
This theorem is referenced by: suppofssd 8244 ofccat 15018 ghmplusg 19888 lcomfsupp 20922 lmhmplusg 21066 frlmvplusgvalc 21810 frlmvscaval 21811 frlmsslsp 21839 frlmup1 21841 frlmup2 21842 islindf4 21881 evlslem3 22127 evlslem1 22129 coe1addfv 22289 evl1addd 22366 evl1subd 22367 evl1muld 22368 mamudi 22428 mamudir 22429 mdetrlin 22629 nmotri 24781 mdegaddle 26133 ply1rem 26225 fta1glem2 26228 fta1blem 26230 plyexmo 26373 ulmdvlem1 26461 jensen 27050 dchrmulcl 27311 dchrinv 27323 sumdchr2 27332 dchr2sum 27335 evlsaddval 42523 evlsmulval 42524 evladdval 42530 evlmulval 42531 mzpsubst 42704 mzpcong 42929 rngunsnply 43130 ofoafg 43316 ofoafo 43318 ofoaid1 43320 ofoaid2 43321 ofoaass 43322 ofoacom 43323 naddcnff 43324 naddcnffo 43326 naddcnfcom 43328 naddcnfid1 43329 naddcnfass 43331 lincsum 48158 |
Copyright terms: Public domain | W3C validator |