MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnfvof Structured version   Visualization version   GIF version

Theorem fnfvof 7634
Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
fnfvof (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))

Proof of Theorem fnfvof
StepHypRef Expression
1 simpll 766 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐹 Fn 𝐴)
2 simplr 768 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
3 simpr 484 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) → 𝐴𝑉)
4 inidm 4180 . . 3 (𝐴𝐴) = 𝐴
5 eqidd 2730 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐹𝑋))
6 eqidd 2730 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → (𝐺𝑋) = (𝐺𝑋))
71, 2, 3, 3, 4, 5, 6ofval 7628 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐴𝑉) ∧ 𝑋𝐴) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
87anasss 466 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑋𝐴)) → ((𝐹f 𝑅𝐺)‘𝑋) = ((𝐹𝑋)𝑅(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   Fn wfn 6481  cfv 6486  (class class class)co 7353  f cof 7615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617
This theorem is referenced by:  suppofssd  8143  ofccat  14894  ghmplusg  19743  lcomfsupp  20823  lmhmplusg  20966  frlmvplusgvalc  21692  frlmvscaval  21693  frlmsslsp  21721  frlmup1  21723  frlmup2  21724  islindf4  21763  evlslem3  22003  evlslem1  22005  coe1addfv  22167  evl1addd  22244  evl1subd  22245  evl1muld  22246  mamudi  22306  mamudir  22307  mdetrlin  22505  nmotri  24643  mdegaddle  25995  ply1rem  26087  fta1glem2  26090  fta1blem  26092  plyexmo  26237  ulmdvlem1  26325  jensen  26915  dchrmulcl  27176  dchrinv  27188  sumdchr2  27197  dchr2sum  27200  evlsaddval  42541  evlsmulval  42542  evladdval  42548  evlmulval  42549  mzpsubst  42721  mzpcong  42945  rngunsnply  43142  ofoafg  43327  ofoafo  43329  ofoaid1  43331  ofoaid2  43332  ofoaass  43333  ofoacom  43334  naddcnff  43335  naddcnffo  43337  naddcnfcom  43339  naddcnfid1  43340  naddcnfass  43342  cjnpoly  46874  lincsum  48415
  Copyright terms: Public domain W3C validator