| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvof | Structured version Visualization version GIF version | ||
| Description: Function value of a pointwise composition. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| fnfvof | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐹 Fn 𝐴) | |
| 2 | simplr 768 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 4 | inidm 4177 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 5 | eqidd 2732 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐹‘𝑋)) | |
| 6 | eqidd 2732 | . . 3 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
| 7 | 1, 2, 3, 3, 4, 5, 6 | ofval 7621 | . 2 ⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| 8 | 7 | anasss 466 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴)) → ((𝐹 ∘f 𝑅𝐺)‘𝑋) = ((𝐹‘𝑋)𝑅(𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 |
| This theorem is referenced by: suppofssd 8133 ofccat 14873 ghmplusg 19756 lcomfsupp 20833 lmhmplusg 20976 frlmvplusgvalc 21702 frlmvscaval 21703 frlmsslsp 21731 frlmup1 21733 frlmup2 21734 islindf4 21773 evlslem3 22013 evlslem1 22015 coe1addfv 22177 evl1addd 22254 evl1subd 22255 evl1muld 22256 mamudi 22316 mamudir 22317 mdetrlin 22515 nmotri 24652 mdegaddle 26004 ply1rem 26096 fta1glem2 26099 fta1blem 26101 plyexmo 26246 ulmdvlem1 26334 jensen 26924 dchrmulcl 27185 dchrinv 27197 sumdchr2 27206 dchr2sum 27209 mplvrpmmhm 33571 mplvrpmrhm 33572 evlsaddval 42600 evlsmulval 42601 evladdval 42607 evlmulval 42608 mzpsubst 42780 mzpcong 43004 rngunsnply 43201 ofoafg 43386 ofoafo 43388 ofoaid1 43390 ofoaid2 43391 ofoaass 43392 ofoacom 43393 naddcnff 43394 naddcnffo 43396 naddcnfcom 43398 naddcnfid1 43399 naddcnfass 43401 cjnpoly 46919 lincsum 48460 |
| Copyright terms: Public domain | W3C validator |