MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmul Structured version   Visualization version   GIF version

Theorem dchrmul 25322
Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrmul.t · = (+g𝐺)
dchrmul.x (𝜑𝑋𝐷)
dchrmul.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchrmul (𝜑 → (𝑋 · 𝑌) = (𝑋𝑓 · 𝑌))

Proof of Theorem dchrmul
StepHypRef Expression
1 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . . 4 𝐷 = (Base‘𝐺)
4 dchrmul.t . . . 4 · = (+g𝐺)
5 dchrmul.x . . . . 5 (𝜑𝑋𝐷)
61, 3dchrrcl 25314 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
75, 6syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
81, 2, 3, 4, 7dchrplusg 25321 . . 3 (𝜑· = ( ∘𝑓 · ↾ (𝐷 × 𝐷)))
98oveqd 6893 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑋( ∘𝑓 · ↾ (𝐷 × 𝐷))𝑌))
10 dchrmul.y . . 3 (𝜑𝑌𝐷)
115, 10ofmresval 7142 . 2 (𝜑 → (𝑋( ∘𝑓 · ↾ (𝐷 × 𝐷))𝑌) = (𝑋𝑓 · 𝑌))
129, 11eqtrd 2831 1 (𝜑 → (𝑋 · 𝑌) = (𝑋𝑓 · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157   × cxp 5308  cres 5312  cfv 6099  (class class class)co 6876  𝑓 cof 7127   · cmul 10227  cn 11310  Basecbs 16181  +gcplusg 16264  ℤ/nczn 20170  DChrcdchr 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-plusg 16277  df-dchr 25307
This theorem is referenced by:  dchrmulcl  25323  dchrmulid2  25326  dchrinvcl  25327  dchrabl  25328  dchrinv  25335  sumdchr2  25344  dchr2sum  25347
  Copyright terms: Public domain W3C validator