Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvadd Structured version   Visualization version   GIF version

Theorem ldualvadd 35285
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
ldualvadd.f 𝐹 = (LFnl‘𝑊)
ldualvadd.r 𝑅 = (Scalar‘𝑊)
ldualvadd.a + = (+g𝑅)
ldualvadd.d 𝐷 = (LDual‘𝑊)
ldualvadd.p = (+g𝐷)
ldualvadd.w (𝜑𝑊𝑋)
ldualvadd.g (𝜑𝐺𝐹)
ldualvadd.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvadd (𝜑 → (𝐺 𝐻) = (𝐺𝑓 + 𝐻))

Proof of Theorem ldualvadd
StepHypRef Expression
1 ldualvadd.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualvadd.r . . . 4 𝑅 = (Scalar‘𝑊)
3 ldualvadd.a . . . 4 + = (+g𝑅)
4 ldualvadd.d . . . 4 𝐷 = (LDual‘𝑊)
5 ldualvadd.p . . . 4 = (+g𝐷)
6 ldualvadd.w . . . 4 (𝜑𝑊𝑋)
7 eqid 2778 . . . 4 ( ∘𝑓 + ↾ (𝐹 × 𝐹)) = ( ∘𝑓 + ↾ (𝐹 × 𝐹))
81, 2, 3, 4, 5, 6, 7ldualfvadd 35284 . . 3 (𝜑 = ( ∘𝑓 + ↾ (𝐹 × 𝐹)))
98oveqd 6939 . 2 (𝜑 → (𝐺 𝐻) = (𝐺( ∘𝑓 + ↾ (𝐹 × 𝐹))𝐻))
10 ldualvadd.g . . 3 (𝜑𝐺𝐹)
11 ldualvadd.h . . 3 (𝜑𝐻𝐹)
1210, 11ofmresval 7187 . 2 (𝜑 → (𝐺( ∘𝑓 + ↾ (𝐹 × 𝐹))𝐻) = (𝐺𝑓 + 𝐻))
139, 12eqtrd 2814 1 (𝜑 → (𝐺 𝐻) = (𝐺𝑓 + 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107   × cxp 5353  cres 5357  cfv 6135  (class class class)co 6922  𝑓 cof 7172  +gcplusg 16338  Scalarcsca 16341  LFnlclfn 35213  LDualcld 35279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-plusg 16351  df-sca 16354  df-vsca 16355  df-ldual 35280
This theorem is referenced by:  ldualvaddcl  35286  ldualvaddval  35287  ldualvaddcom  35296  ldualvsdi1  35299  ldualvsdi2  35300  ldualgrplem  35301  ldual0v  35306
  Copyright terms: Public domain W3C validator