![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvadd | Structured version Visualization version GIF version |
Description: Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
ldualvadd.f | β’ πΉ = (LFnlβπ) |
ldualvadd.r | β’ π = (Scalarβπ) |
ldualvadd.a | β’ + = (+gβπ ) |
ldualvadd.d | β’ π· = (LDualβπ) |
ldualvadd.p | β’ β = (+gβπ·) |
ldualvadd.w | β’ (π β π β π) |
ldualvadd.g | β’ (π β πΊ β πΉ) |
ldualvadd.h | β’ (π β π» β πΉ) |
Ref | Expression |
---|---|
ldualvadd | β’ (π β (πΊ β π») = (πΊ βf + π»)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvadd.f | . . . 4 β’ πΉ = (LFnlβπ) | |
2 | ldualvadd.r | . . . 4 β’ π = (Scalarβπ) | |
3 | ldualvadd.a | . . . 4 β’ + = (+gβπ ) | |
4 | ldualvadd.d | . . . 4 β’ π· = (LDualβπ) | |
5 | ldualvadd.p | . . . 4 β’ β = (+gβπ·) | |
6 | ldualvadd.w | . . . 4 β’ (π β π β π) | |
7 | eqid 2724 | . . . 4 β’ ( βf + βΎ (πΉ Γ πΉ)) = ( βf + βΎ (πΉ Γ πΉ)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ldualfvadd 38454 | . . 3 β’ (π β β = ( βf + βΎ (πΉ Γ πΉ))) |
9 | 8 | oveqd 7418 | . 2 β’ (π β (πΊ β π») = (πΊ( βf + βΎ (πΉ Γ πΉ))π»)) |
10 | ldualvadd.g | . . 3 β’ (π β πΊ β πΉ) | |
11 | ldualvadd.h | . . 3 β’ (π β π» β πΉ) | |
12 | 10, 11 | ofmresval 7679 | . 2 β’ (π β (πΊ( βf + βΎ (πΉ Γ πΉ))π») = (πΊ βf + π»)) |
13 | 9, 12 | eqtrd 2764 | 1 β’ (π β (πΊ β π») = (πΊ βf + π»)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Γ cxp 5664 βΎ cres 5668 βcfv 6533 (class class class)co 7401 βf cof 7661 +gcplusg 17195 Scalarcsca 17198 LFnlclfn 38383 LDualcld 38449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17078 df-slot 17113 df-ndx 17125 df-base 17143 df-plusg 17208 df-sca 17211 df-vsca 17212 df-ldual 38450 |
This theorem is referenced by: ldualvaddcl 38456 ldualvaddval 38457 ldualvaddcom 38466 ldualvsdi1 38469 ldualvsdi2 38470 ldualgrplem 38471 ldual0v 38476 |
Copyright terms: Public domain | W3C validator |