Step | Hyp | Ref
| Expression |
1 | | offval2f.0 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
2 | | offval2f.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
3 | 2 | ex 413 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑊)) |
4 | 1, 3 | ralrimi 3141 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) |
5 | | offval2f.a |
. . . . . 6
⊢
Ⅎ𝑥𝐴 |
6 | 5 | fnmptf 6569 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑊 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
7 | 4, 6 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
8 | | offval2f.4 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
9 | 8 | fneq1d 6526 |
. . . 4
⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) |
10 | 7, 9 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐹 Fn 𝐴) |
11 | | offval2f.3 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) |
12 | 11 | ex 413 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋)) |
13 | 1, 12 | ralrimi 3141 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝑋) |
14 | 5 | fnmptf 6569 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝑋 → (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
16 | | offval2f.5 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
17 | 16 | fneq1d 6526 |
. . . 4
⊢ (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴)) |
18 | 15, 17 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐺 Fn 𝐴) |
19 | | offval2f.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
20 | | inidm 4152 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
21 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
22 | 21 | fveq1d 6776 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) |
23 | 16 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
24 | 23 | fveq1d 6776 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
25 | 10, 18, 19, 19, 20, 22, 24 | offval 7542 |
. 2
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑦 ∈ 𝐴 ↦ (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)))) |
26 | | nfcv 2907 |
. . . 4
⊢
Ⅎ𝑦𝐴 |
27 | | nffvmpt1 6785 |
. . . . 5
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
28 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑥𝑅 |
29 | | nffvmpt1 6785 |
. . . . 5
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) |
30 | 27, 28, 29 | nfov 7305 |
. . . 4
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
31 | | nfcv 2907 |
. . . 4
⊢
Ⅎ𝑦(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥)) |
32 | | fveq2 6774 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
33 | | fveq2 6774 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥)) |
34 | 32, 33 | oveq12d 7293 |
. . . 4
⊢ (𝑦 = 𝑥 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) = (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥))) |
35 | 26, 5, 30, 31, 34 | cbvmptf 5183 |
. . 3
⊢ (𝑦 ∈ 𝐴 ↦ (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦))) = (𝑥 ∈ 𝐴 ↦ (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥))) |
36 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
37 | 5 | fvmpt2f 6876 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
38 | 36, 2, 37 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
39 | 5 | fvmpt2f 6876 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑋) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
40 | 36, 11, 39 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
41 | 38, 40 | oveq12d 7293 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥)) = (𝐵𝑅𝐶)) |
42 | 1, 41 | mpteq2da 5172 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥))) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
43 | 35, 42 | eqtrid 2790 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)𝑅((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦))) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
44 | 25, 43 | eqtrd 2778 |
1
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |