MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval2f Structured version   Visualization version   GIF version

Theorem offval2f 7632
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 23-Jun-2017.)
Hypotheses
Ref Expression
offval2f.0 𝑥𝜑
offval2f.a 𝑥𝐴
offval2f.1 (𝜑𝐴𝑉)
offval2f.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
offval2f.3 ((𝜑𝑥𝐴) → 𝐶𝑋)
offval2f.4 (𝜑𝐹 = (𝑥𝐴𝐵))
offval2f.5 (𝜑𝐺 = (𝑥𝐴𝐶))
Assertion
Ref Expression
offval2f (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem offval2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 offval2f.0 . . . . . 6 𝑥𝜑
2 offval2f.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑊)
32ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝐵𝑊))
41, 3ralrimi 3227 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
5 offval2f.a . . . . . 6 𝑥𝐴
65fnmptf 6622 . . . . 5 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
74, 6syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
8 offval2f.4 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐵))
98fneq1d 6579 . . . 4 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
107, 9mpbird 257 . . 3 (𝜑𝐹 Fn 𝐴)
11 offval2f.3 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶𝑋)
1211ex 412 . . . . . 6 (𝜑 → (𝑥𝐴𝐶𝑋))
131, 12ralrimi 3227 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐶𝑋)
145fnmptf 6622 . . . . 5 (∀𝑥𝐴 𝐶𝑋 → (𝑥𝐴𝐶) Fn 𝐴)
1513, 14syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐶) Fn 𝐴)
16 offval2f.5 . . . . 5 (𝜑𝐺 = (𝑥𝐴𝐶))
1716fneq1d 6579 . . . 4 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
1815, 17mpbird 257 . . 3 (𝜑𝐺 Fn 𝐴)
19 offval2f.1 . . 3 (𝜑𝐴𝑉)
20 inidm 4180 . . 3 (𝐴𝐴) = 𝐴
218adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝐹 = (𝑥𝐴𝐵))
2221fveq1d 6828 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) = ((𝑥𝐴𝐵)‘𝑦))
2316adantr 480 . . . 4 ((𝜑𝑦𝐴) → 𝐺 = (𝑥𝐴𝐶))
2423fveq1d 6828 . . 3 ((𝜑𝑦𝐴) → (𝐺𝑦) = ((𝑥𝐴𝐶)‘𝑦))
2510, 18, 19, 19, 20, 22, 24offval 7626 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑦𝐴 ↦ (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦))))
26 nfcv 2891 . . . 4 𝑦𝐴
27 nffvmpt1 6837 . . . . 5 𝑥((𝑥𝐴𝐵)‘𝑦)
28 nfcv 2891 . . . . 5 𝑥𝑅
29 nffvmpt1 6837 . . . . 5 𝑥((𝑥𝐴𝐶)‘𝑦)
3027, 28, 29nfov 7383 . . . 4 𝑥(((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦))
31 nfcv 2891 . . . 4 𝑦(((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥))
32 fveq2 6826 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
33 fveq2 6826 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐶)‘𝑦) = ((𝑥𝐴𝐶)‘𝑥))
3432, 33oveq12d 7371 . . . 4 (𝑦 = 𝑥 → (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦)) = (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)))
3526, 5, 30, 31, 34cbvmptf 5195 . . 3 (𝑦𝐴 ↦ (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦))) = (𝑥𝐴 ↦ (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)))
36 simpr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
375fvmpt2f 6935 . . . . . 6 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3836, 2, 37syl2anc 584 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
395fvmpt2f 6935 . . . . . 6 ((𝑥𝐴𝐶𝑋) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
4036, 11, 39syl2anc 584 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
4138, 40oveq12d 7371 . . . 4 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)) = (𝐵𝑅𝐶))
421, 41mpteq2da 5187 . . 3 (𝜑 → (𝑥𝐴 ↦ (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥))) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
4335, 42eqtrid 2776 . 2 (𝜑 → (𝑦𝐴 ↦ (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦))) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
4425, 43eqtrd 2764 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  cmpt 5176   Fn wfn 6481  cfv 6486  (class class class)co 7353  f cof 7615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617
This theorem is referenced by:  esumaddf  34030  binomcxplemnotnn0  44332
  Copyright terms: Public domain W3C validator