Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpgrp | Structured version Visualization version GIF version |
Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
Ref | Expression |
---|---|
ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 31230 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18492 oMndcomnd 31225 oGrpcogrp 31226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ogrp 31228 |
This theorem is referenced by: ogrpinv0le 31243 ogrpsub 31244 ogrpaddlt 31245 ogrpaddltbi 31246 ogrpaddltrbid 31248 ogrpsublt 31249 ogrpinv0lt 31250 ogrpinvlt 31251 isarchi3 31343 archirng 31344 archirngz 31345 archiabllem1a 31347 archiabllem1b 31348 archiabllem1 31349 archiabllem2a 31350 archiabllem2c 31351 archiabllem2b 31352 archiabllem2 31353 |
Copyright terms: Public domain | W3C validator |