| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ogrpgrp | Structured version Visualization version GIF version | ||
| Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 20039 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18848 oMndcomnd 20034 oGrpcogrp 20035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ogrp 20037 |
| This theorem is referenced by: ogrpinv0le 20051 ogrpsub 20052 ogrpaddlt 20053 ogrpaddltbi 20054 ogrpaddltrbid 20056 ogrpsublt 20057 ogrpinv0lt 20058 ogrpinvlt 20059 isarchi3 33157 archirng 33158 archirngz 33159 archiabllem1a 33161 archiabllem1b 33162 archiabllem1 33163 archiabllem2a 33164 archiabllem2c 33165 archiabllem2b 33166 archiabllem2 33167 |
| Copyright terms: Public domain | W3C validator |