| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ogrpgrp | Structured version Visualization version GIF version | ||
| Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 20036 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Grpcgrp 18846 oMndcomnd 20031 oGrpcogrp 20032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ogrp 20034 |
| This theorem is referenced by: ogrpinv0le 20048 ogrpsub 20049 ogrpaddlt 20050 ogrpaddltbi 20051 ogrpaddltrbid 20053 ogrpsublt 20054 ogrpinv0lt 20055 ogrpinvlt 20056 isarchi3 33156 archirng 33157 archirngz 33158 archiabllem1a 33160 archiabllem1b 33161 archiabllem1 33162 archiabllem2a 33163 archiabllem2c 33164 archiabllem2b 33165 archiabllem2 33166 |
| Copyright terms: Public domain | W3C validator |