| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpgrp | Structured version Visualization version GIF version | ||
| Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 33016 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18865 oMndcomnd 33011 oGrpcogrp 33012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ogrp 33014 |
| This theorem is referenced by: ogrpinv0le 33029 ogrpsub 33030 ogrpaddlt 33031 ogrpaddltbi 33032 ogrpaddltrbid 33034 ogrpsublt 33035 ogrpinv0lt 33036 ogrpinvlt 33037 isarchi3 33141 archirng 33142 archirngz 33143 archiabllem1a 33145 archiabllem1b 33146 archiabllem1 33147 archiabllem2a 33148 archiabllem2c 33149 archiabllem2b 33150 archiabllem2 33151 |
| Copyright terms: Public domain | W3C validator |