| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ogrpgrp | Structured version Visualization version GIF version | ||
| Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 20038 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18847 oMndcomnd 20033 oGrpcogrp 20034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ogrp 20036 |
| This theorem is referenced by: ogrpinv0le 20050 ogrpsub 20051 ogrpaddlt 20052 ogrpaddltbi 20053 ogrpaddltrbid 20055 ogrpsublt 20056 ogrpinv0lt 20057 ogrpinvlt 20058 isarchi3 33156 archirng 33157 archirngz 33158 archiabllem1a 33160 archiabllem1b 33161 archiabllem1 33162 archiabllem2a 33163 archiabllem2c 33164 archiabllem2b 33165 archiabllem2 33166 |
| Copyright terms: Public domain | W3C validator |