Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpgrp Structured version   Visualization version   GIF version

Theorem ogrpgrp 33053
Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.)
Assertion
Ref Expression
ogrpgrp (𝐺 ∈ oGrp → 𝐺 ∈ Grp)

Proof of Theorem ogrpgrp
StepHypRef Expression
1 isogrp 33052 . 2 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simplbi 497 1 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Grpcgrp 18973  oMndcomnd 33047  oGrpcogrp 33048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-ogrp 33050
This theorem is referenced by:  ogrpinv0le  33065  ogrpsub  33066  ogrpaddlt  33067  ogrpaddltbi  33068  ogrpaddltrbid  33070  ogrpsublt  33071  ogrpinv0lt  33072  ogrpinvlt  33073  isarchi3  33167  archirng  33168  archirngz  33169  archiabllem1a  33171  archiabllem1b  33172  archiabllem1  33173  archiabllem2a  33174  archiabllem2c  33175  archiabllem2b  33176  archiabllem2  33177
  Copyright terms: Public domain W3C validator