Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpgrp Structured version   Visualization version   GIF version

Theorem ogrpgrp 32221
Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.)
Assertion
Ref Expression
ogrpgrp (𝐺 ∈ oGrp → 𝐺 ∈ Grp)

Proof of Theorem ogrpgrp
StepHypRef Expression
1 isogrp 32220 . 2 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simplbi 499 1 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Grpcgrp 18819  oMndcomnd 32215  oGrpcogrp 32216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ogrp 32218
This theorem is referenced by:  ogrpinv0le  32233  ogrpsub  32234  ogrpaddlt  32235  ogrpaddltbi  32236  ogrpaddltrbid  32238  ogrpsublt  32239  ogrpinv0lt  32240  ogrpinvlt  32241  isarchi3  32333  archirng  32334  archirngz  32335  archiabllem1a  32337  archiabllem1b  32338  archiabllem1  32339  archiabllem2a  32340  archiabllem2c  32341  archiabllem2b  32342  archiabllem2  32343
  Copyright terms: Public domain W3C validator