Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpgrp Structured version   Visualization version   GIF version

Theorem ogrpgrp 33017
Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.)
Assertion
Ref Expression
ogrpgrp (𝐺 ∈ oGrp → 𝐺 ∈ Grp)

Proof of Theorem ogrpgrp
StepHypRef Expression
1 isogrp 33016 . 2 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simplbi 497 1 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Grpcgrp 18865  oMndcomnd 33011  oGrpcogrp 33012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-ogrp 33014
This theorem is referenced by:  ogrpinv0le  33029  ogrpsub  33030  ogrpaddlt  33031  ogrpaddltbi  33032  ogrpaddltrbid  33034  ogrpsublt  33035  ogrpinv0lt  33036  ogrpinvlt  33037  isarchi3  33141  archirng  33142  archirngz  33143  archiabllem1a  33145  archiabllem1b  33146  archiabllem1  33147  archiabllem2a  33148  archiabllem2c  33149  archiabllem2b  33150  archiabllem2  33151
  Copyright terms: Public domain W3C validator