Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpgrp | Structured version Visualization version GIF version |
Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
Ref | Expression |
---|---|
ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 31328 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Grpcgrp 18577 oMndcomnd 31323 oGrpcogrp 31324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ogrp 31326 |
This theorem is referenced by: ogrpinv0le 31341 ogrpsub 31342 ogrpaddlt 31343 ogrpaddltbi 31344 ogrpaddltrbid 31346 ogrpsublt 31347 ogrpinv0lt 31348 ogrpinvlt 31349 isarchi3 31441 archirng 31442 archirngz 31443 archiabllem1a 31445 archiabllem1b 31446 archiabllem1 31447 archiabllem2a 31448 archiabllem2c 31449 archiabllem2b 31450 archiabllem2 31451 |
Copyright terms: Public domain | W3C validator |