| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ogrpgrp | Structured version Visualization version GIF version | ||
| Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 20003 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18812 oMndcomnd 19998 oGrpcogrp 19999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-ogrp 20001 |
| This theorem is referenced by: ogrpinv0le 20015 ogrpsub 20016 ogrpaddlt 20017 ogrpaddltbi 20018 ogrpaddltrbid 20020 ogrpsublt 20021 ogrpinv0lt 20022 ogrpinvlt 20023 isarchi3 33138 archirng 33139 archirngz 33140 archiabllem1a 33142 archiabllem1b 33143 archiabllem1 33144 archiabllem2a 33145 archiabllem2c 33146 archiabllem2b 33147 archiabllem2 33148 |
| Copyright terms: Public domain | W3C validator |