| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpgrp | Structured version Visualization version GIF version | ||
| Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 33070 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18916 oMndcomnd 33065 oGrpcogrp 33066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ogrp 33068 |
| This theorem is referenced by: ogrpinv0le 33083 ogrpsub 33084 ogrpaddlt 33085 ogrpaddltbi 33086 ogrpaddltrbid 33088 ogrpsublt 33089 ogrpinv0lt 33090 ogrpinvlt 33091 isarchi3 33185 archirng 33186 archirngz 33187 archiabllem1a 33189 archiabllem1b 33190 archiabllem1 33191 archiabllem2a 33192 archiabllem2c 33193 archiabllem2b 33194 archiabllem2 33195 |
| Copyright terms: Public domain | W3C validator |