![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpgrp | Structured version Visualization version GIF version |
Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
Ref | Expression |
---|---|
ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 32726 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 Grpcgrp 18863 oMndcomnd 32721 oGrpcogrp 32722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-ogrp 32724 |
This theorem is referenced by: ogrpinv0le 32739 ogrpsub 32740 ogrpaddlt 32741 ogrpaddltbi 32742 ogrpaddltrbid 32744 ogrpsublt 32745 ogrpinv0lt 32746 ogrpinvlt 32747 isarchi3 32839 archirng 32840 archirngz 32841 archiabllem1a 32843 archiabllem1b 32844 archiabllem1 32845 archiabllem2a 32846 archiabllem2c 32847 archiabllem2b 32848 archiabllem2 32849 |
Copyright terms: Public domain | W3C validator |