![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpgrp | Structured version Visualization version GIF version |
Description: A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
Ref | Expression |
---|---|
ogrpgrp | ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 33052 | . 2 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18973 oMndcomnd 33047 oGrpcogrp 33048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ogrp 33050 |
This theorem is referenced by: ogrpinv0le 33065 ogrpsub 33066 ogrpaddlt 33067 ogrpaddltbi 33068 ogrpaddltrbid 33070 ogrpsublt 33071 ogrpinv0lt 33072 ogrpinvlt 33073 isarchi3 33167 archirng 33168 archirngz 33169 archiabllem1a 33171 archiabllem1b 33172 archiabllem1 33173 archiabllem2a 33174 archiabllem2c 33175 archiabllem2b 33176 archiabllem2 33177 |
Copyright terms: Public domain | W3C validator |