Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltbi Structured version   Visualization version   GIF version

Theorem ogrpaddltbi 31344
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
Assertion
Ref Expression
ogrpaddltbi ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 + 𝑍) < (𝑌 + 𝑍)))

Proof of Theorem ogrpaddltbi
StepHypRef Expression
1 ogrpaddlt.0 . . . 4 𝐵 = (Base‘𝐺)
2 ogrpaddlt.1 . . . 4 < = (lt‘𝐺)
3 ogrpaddlt.2 . . . 4 + = (+g𝐺)
41, 2, 3ogrpaddlt 31343 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍))
543expa 1117 . 2 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍))
6 simpll 764 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → 𝐺 ∈ oGrp)
7 ogrpgrp 31329 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
86, 7syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → 𝐺 ∈ Grp)
9 simplr1 1214 . . . . 5 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → 𝑋𝐵)
10 simplr3 1216 . . . . 5 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → 𝑍𝐵)
111, 3grpcl 18585 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 + 𝑍) ∈ 𝐵)
128, 9, 10, 11syl3anc 1370 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → (𝑋 + 𝑍) ∈ 𝐵)
13 simplr2 1215 . . . . 5 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → 𝑌𝐵)
141, 3grpcl 18585 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 + 𝑍) ∈ 𝐵)
158, 13, 10, 14syl3anc 1370 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → (𝑌 + 𝑍) ∈ 𝐵)
16 eqid 2738 . . . . . 6 (invg𝐺) = (invg𝐺)
171, 16grpinvcl 18627 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
188, 10, 17syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
19 simpr 485 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → (𝑋 + 𝑍) < (𝑌 + 𝑍))
201, 2, 3ogrpaddlt 31343 . . . 4 ((𝐺 ∈ oGrp ∧ ((𝑋 + 𝑍) ∈ 𝐵 ∧ (𝑌 + 𝑍) ∈ 𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → ((𝑋 + 𝑍) + ((invg𝐺)‘𝑍)) < ((𝑌 + 𝑍) + ((invg𝐺)‘𝑍)))
216, 12, 15, 18, 19, 20syl131anc 1382 . . 3 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → ((𝑋 + 𝑍) + ((invg𝐺)‘𝑍)) < ((𝑌 + 𝑍) + ((invg𝐺)‘𝑍)))
221, 3grpass 18586 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑍) + ((invg𝐺)‘𝑍)) = (𝑋 + (𝑍 + ((invg𝐺)‘𝑍))))
238, 9, 10, 18, 22syl13anc 1371 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → ((𝑋 + 𝑍) + ((invg𝐺)‘𝑍)) = (𝑋 + (𝑍 + ((invg𝐺)‘𝑍))))
24 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
251, 3, 24, 16grprinv 18629 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (𝑍 + ((invg𝐺)‘𝑍)) = (0g𝐺))
268, 10, 25syl2anc 584 . . . . 5 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → (𝑍 + ((invg𝐺)‘𝑍)) = (0g𝐺))
2726oveq2d 7291 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → (𝑋 + (𝑍 + ((invg𝐺)‘𝑍))) = (𝑋 + (0g𝐺)))
281, 3, 24grprid 18610 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
298, 9, 28syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → (𝑋 + (0g𝐺)) = 𝑋)
3023, 27, 293eqtrd 2782 . . 3 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → ((𝑋 + 𝑍) + ((invg𝐺)‘𝑍)) = 𝑋)
311, 3grpass 18586 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵)) → ((𝑌 + 𝑍) + ((invg𝐺)‘𝑍)) = (𝑌 + (𝑍 + ((invg𝐺)‘𝑍))))
328, 13, 10, 18, 31syl13anc 1371 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → ((𝑌 + 𝑍) + ((invg𝐺)‘𝑍)) = (𝑌 + (𝑍 + ((invg𝐺)‘𝑍))))
3326oveq2d 7291 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → (𝑌 + (𝑍 + ((invg𝐺)‘𝑍))) = (𝑌 + (0g𝐺)))
341, 3, 24grprid 18610 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 + (0g𝐺)) = 𝑌)
358, 13, 34syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → (𝑌 + (0g𝐺)) = 𝑌)
3632, 33, 353eqtrd 2782 . . 3 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → ((𝑌 + 𝑍) + ((invg𝐺)‘𝑍)) = 𝑌)
3721, 30, 363brtr3d 5105 . 2 (((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋 + 𝑍) < (𝑌 + 𝑍)) → 𝑋 < 𝑌)
385, 37impbida 798 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌 ↔ (𝑋 + 𝑍) < (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  ltcplt 18026  Grpcgrp 18577  invgcminusg 18578  oGrpcogrp 31324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-plt 18048  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-omnd 31325  df-ogrp 31326
This theorem is referenced by:  ogrpinvlt  31349
  Copyright terms: Public domain W3C validator