Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinv0le Structured version   Visualization version   GIF version

Theorem ogrpinv0le 31335
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpsub.0 𝐵 = (Base‘𝐺)
ogrpsub.1 = (le‘𝐺)
ogrpinv.2 𝐼 = (invg𝐺)
ogrpinv.3 0 = (0g𝐺)
Assertion
Ref Expression
ogrpinv0le ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 𝑋 ↔ (𝐼𝑋) 0 ))

Proof of Theorem ogrpinv0le
StepHypRef Expression
1 isogrp 31322 . . . . . 6 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 497 . . . . 5 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
32ad2antrr 723 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝐺 ∈ oMnd)
4 omndmnd 31324 . . . . 5 (𝐺 ∈ oMnd → 𝐺 ∈ Mnd)
5 ogrpsub.0 . . . . . 6 𝐵 = (Base‘𝐺)
6 ogrpinv.3 . . . . . 6 0 = (0g𝐺)
75, 6mndidcl 18396 . . . . 5 (𝐺 ∈ Mnd → 0𝐵)
83, 4, 73syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 0𝐵)
9 simplr 766 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑋𝐵)
10 ogrpgrp 31323 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
1110ad2antrr 723 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝐺 ∈ Grp)
12 ogrpinv.2 . . . . . 6 𝐼 = (invg𝐺)
135, 12grpinvcl 18623 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
1411, 9, 13syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝐼𝑋) ∈ 𝐵)
15 simpr 485 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 𝑋)
16 ogrpsub.1 . . . . 5 = (le‘𝐺)
17 eqid 2740 . . . . 5 (+g𝐺) = (+g𝐺)
185, 16, 17omndadd 31326 . . . 4 ((𝐺 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) (𝑋(+g𝐺)(𝐼𝑋)))
193, 8, 9, 14, 15, 18syl131anc 1382 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) (𝑋(+g𝐺)(𝐼𝑋)))
205, 17, 6grplid 18605 . . . 4 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
2111, 14, 20syl2anc 584 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
225, 17, 6, 12grprinv 18625 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2311, 9, 22syl2anc 584 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2419, 21, 233brtr3d 5110 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝐼𝑋) 0 )
252ad2antrr 723 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝐺 ∈ oMnd)
2610ad2antrr 723 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝐺 ∈ Grp)
27 simplr 766 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝑋𝐵)
2826, 27, 13syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → (𝐼𝑋) ∈ 𝐵)
2925, 4, 73syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 0𝐵)
30 simpr 485 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → (𝐼𝑋) 0 )
315, 16, 17omndadd 31326 . . . 4 ((𝐺 ∈ oMnd ∧ ((𝐼𝑋) ∈ 𝐵0𝐵𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) ( 0 (+g𝐺)𝑋))
3225, 28, 29, 27, 30, 31syl131anc 1382 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) ( 0 (+g𝐺)𝑋))
335, 17, 6, 12grplinv 18624 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
3426, 27, 33syl2anc 584 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
355, 17, 6grplid 18605 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)𝑋) = 𝑋)
3626, 27, 35syl2anc 584 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ( 0 (+g𝐺)𝑋) = 𝑋)
3732, 34, 363brtr3d 5110 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 0 𝑋)
3824, 37impbida 798 1 ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 𝑋 ↔ (𝐼𝑋) 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6431  (class class class)co 7269  Basecbs 16908  +gcplusg 16958  lecple 16965  0gc0g 17146  Mndcmnd 18381  Grpcgrp 18573  invgcminusg 18574  oMndcomnd 31317  oGrpcogrp 31318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-fv 6439  df-riota 7226  df-ov 7272  df-0g 17148  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-grp 18576  df-minusg 18577  df-omnd 31319  df-ogrp 31320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator