Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinv0le Structured version   Visualization version   GIF version

Theorem ogrpinv0le 30766
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpsub.0 𝐵 = (Base‘𝐺)
ogrpsub.1 = (le‘𝐺)
ogrpinv.2 𝐼 = (invg𝐺)
ogrpinv.3 0 = (0g𝐺)
Assertion
Ref Expression
ogrpinv0le ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 𝑋 ↔ (𝐼𝑋) 0 ))

Proof of Theorem ogrpinv0le
StepHypRef Expression
1 isogrp 30753 . . . . . 6 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 500 . . . . 5 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
32ad2antrr 725 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝐺 ∈ oMnd)
4 omndmnd 30755 . . . . 5 (𝐺 ∈ oMnd → 𝐺 ∈ Mnd)
5 ogrpsub.0 . . . . . 6 𝐵 = (Base‘𝐺)
6 ogrpinv.3 . . . . . 6 0 = (0g𝐺)
75, 6mndidcl 17918 . . . . 5 (𝐺 ∈ Mnd → 0𝐵)
83, 4, 73syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 0𝐵)
9 simplr 768 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝑋𝐵)
10 ogrpgrp 30754 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
1110ad2antrr 725 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 𝐺 ∈ Grp)
12 ogrpinv.2 . . . . . 6 𝐼 = (invg𝐺)
135, 12grpinvcl 18143 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
1411, 9, 13syl2anc 587 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝐼𝑋) ∈ 𝐵)
15 simpr 488 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → 0 𝑋)
16 ogrpsub.1 . . . . 5 = (le‘𝐺)
17 eqid 2798 . . . . 5 (+g𝐺) = (+g𝐺)
185, 16, 17omndadd 30757 . . . 4 ((𝐺 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) (𝑋(+g𝐺)(𝐼𝑋)))
193, 8, 9, 14, 15, 18syl131anc 1380 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) (𝑋(+g𝐺)(𝐼𝑋)))
205, 17, 6grplid 18125 . . . 4 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
2111, 14, 20syl2anc 587 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
225, 17, 6, 12grprinv 18145 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2311, 9, 22syl2anc 587 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2419, 21, 233brtr3d 5061 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 𝑋) → (𝐼𝑋) 0 )
252ad2antrr 725 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝐺 ∈ oMnd)
2610ad2antrr 725 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝐺 ∈ Grp)
27 simplr 768 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 𝑋𝐵)
2826, 27, 13syl2anc 587 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → (𝐼𝑋) ∈ 𝐵)
2925, 4, 73syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 0𝐵)
30 simpr 488 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → (𝐼𝑋) 0 )
315, 16, 17omndadd 30757 . . . 4 ((𝐺 ∈ oMnd ∧ ((𝐼𝑋) ∈ 𝐵0𝐵𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) ( 0 (+g𝐺)𝑋))
3225, 28, 29, 27, 30, 31syl131anc 1380 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) ( 0 (+g𝐺)𝑋))
335, 17, 6, 12grplinv 18144 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
3426, 27, 33syl2anc 587 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
355, 17, 6grplid 18125 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)𝑋) = 𝑋)
3626, 27, 35syl2anc 587 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → ( 0 (+g𝐺)𝑋) = 𝑋)
3732, 34, 363brtr3d 5061 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) 0 ) → 0 𝑋)
3824, 37impbida 800 1 ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 𝑋 ↔ (𝐼𝑋) 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  lecple 16564  0gc0g 16705  Mndcmnd 17903  Grpcgrp 18095  invgcminusg 18096  oMndcomnd 30748  oGrpcogrp 30749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-riota 7093  df-ov 7138  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-omnd 30750  df-ogrp 30751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator