Proof of Theorem ogrpinv0le
Step | Hyp | Ref
| Expression |
1 | | isogrp 31322 |
. . . . . 6
⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
2 | 1 | simprbi 497 |
. . . . 5
⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
3 | 2 | ad2antrr 723 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 𝐺 ∈ oMnd) |
4 | | omndmnd 31324 |
. . . . 5
⊢ (𝐺 ∈ oMnd → 𝐺 ∈ Mnd) |
5 | | ogrpsub.0 |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
6 | | ogrpinv.3 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
7 | 5, 6 | mndidcl 18396 |
. . . . 5
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
8 | 3, 4, 7 | 3syl 18 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 0 ∈ 𝐵) |
9 | | simplr 766 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
10 | | ogrpgrp 31323 |
. . . . . 6
⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
11 | 10 | ad2antrr 723 |
. . . . 5
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 𝐺 ∈ Grp) |
12 | | ogrpinv.2 |
. . . . . 6
⊢ 𝐼 = (invg‘𝐺) |
13 | 5, 12 | grpinvcl 18623 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
14 | 11, 9, 13 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → (𝐼‘𝑋) ∈ 𝐵) |
15 | | simpr 485 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 0 ≤ 𝑋) |
16 | | ogrpsub.1 |
. . . . 5
⊢ ≤ =
(le‘𝐺) |
17 | | eqid 2740 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
18 | 5, 16, 17 | omndadd 31326 |
. . . 4
⊢ ((𝐺 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝐼‘𝑋) ∈ 𝐵) ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) ≤ (𝑋(+g‘𝐺)(𝐼‘𝑋))) |
19 | 3, 8, 9, 14, 15, 18 | syl131anc 1382 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) ≤ (𝑋(+g‘𝐺)(𝐼‘𝑋))) |
20 | 5, 17, 6 | grplid 18605 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝐼‘𝑋) ∈ 𝐵) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
21 | 11, 14, 20 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
22 | 5, 17, 6, 12 | grprinv 18625 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = 0 ) |
23 | 11, 9, 22 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = 0 ) |
24 | 19, 21, 23 | 3brtr3d 5110 |
. 2
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → (𝐼‘𝑋) ≤ 0 ) |
25 | 2 | ad2antrr 723 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 𝐺 ∈ oMnd) |
26 | 10 | ad2antrr 723 |
. . . . 5
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 𝐺 ∈ Grp) |
27 | | simplr 766 |
. . . . 5
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 𝑋 ∈ 𝐵) |
28 | 26, 27, 13 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
29 | 25, 4, 7 | 3syl 18 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 0 ∈ 𝐵) |
30 | | simpr 485 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → (𝐼‘𝑋) ≤ 0 ) |
31 | 5, 16, 17 | omndadd 31326 |
. . . 4
⊢ ((𝐺 ∈ oMnd ∧ ((𝐼‘𝑋) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → ((𝐼‘𝑋)(+g‘𝐺)𝑋) ≤ ( 0 (+g‘𝐺)𝑋)) |
32 | 25, 28, 29, 27, 30, 31 | syl131anc 1382 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → ((𝐼‘𝑋)(+g‘𝐺)𝑋) ≤ ( 0 (+g‘𝐺)𝑋)) |
33 | 5, 17, 6, 12 | grplinv 18624 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝐼‘𝑋)(+g‘𝐺)𝑋) = 0 ) |
34 | 26, 27, 33 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → ((𝐼‘𝑋)(+g‘𝐺)𝑋) = 0 ) |
35 | 5, 17, 6 | grplid 18605 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑋) = 𝑋) |
36 | 26, 27, 35 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → ( 0
(+g‘𝐺)𝑋) = 𝑋) |
37 | 32, 34, 36 | 3brtr3d 5110 |
. 2
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 0 ≤ 𝑋) |
38 | 24, 37 | impbida 798 |
1
⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) → ( 0 ≤ 𝑋 ↔ (𝐼‘𝑋) ≤ 0 )) |