Proof of Theorem ogrpinv0le
| Step | Hyp | Ref
| Expression |
| 1 | | isogrp 33079 |
. . . . . 6
⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| 2 | 1 | simprbi 496 |
. . . . 5
⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
| 3 | 2 | ad2antrr 726 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 𝐺 ∈ oMnd) |
| 4 | | omndmnd 33081 |
. . . . 5
⊢ (𝐺 ∈ oMnd → 𝐺 ∈ Mnd) |
| 5 | | ogrpsub.0 |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 6 | | ogrpinv.3 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
| 7 | 5, 6 | mndidcl 18762 |
. . . . 5
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 8 | 3, 4, 7 | 3syl 18 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 0 ∈ 𝐵) |
| 9 | | simplr 769 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
| 10 | | ogrpgrp 33080 |
. . . . . 6
⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
| 11 | 10 | ad2antrr 726 |
. . . . 5
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 𝐺 ∈ Grp) |
| 12 | | ogrpinv.2 |
. . . . . 6
⊢ 𝐼 = (invg‘𝐺) |
| 13 | 5, 12 | grpinvcl 19005 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
| 14 | 11, 9, 13 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → (𝐼‘𝑋) ∈ 𝐵) |
| 15 | | simpr 484 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → 0 ≤ 𝑋) |
| 16 | | ogrpsub.1 |
. . . . 5
⊢ ≤ =
(le‘𝐺) |
| 17 | | eqid 2737 |
. . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 18 | 5, 16, 17 | omndadd 33083 |
. . . 4
⊢ ((𝐺 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝐼‘𝑋) ∈ 𝐵) ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) ≤ (𝑋(+g‘𝐺)(𝐼‘𝑋))) |
| 19 | 3, 8, 9, 14, 15, 18 | syl131anc 1385 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) ≤ (𝑋(+g‘𝐺)(𝐼‘𝑋))) |
| 20 | 5, 17, 6 | grplid 18985 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝐼‘𝑋) ∈ 𝐵) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
| 21 | 11, 14, 20 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → ( 0 (+g‘𝐺)(𝐼‘𝑋)) = (𝐼‘𝑋)) |
| 22 | 5, 17, 6, 12 | grprinv 19008 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = 0 ) |
| 23 | 11, 9, 22 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = 0 ) |
| 24 | 19, 21, 23 | 3brtr3d 5174 |
. 2
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 ≤ 𝑋) → (𝐼‘𝑋) ≤ 0 ) |
| 25 | 2 | ad2antrr 726 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 𝐺 ∈ oMnd) |
| 26 | 10 | ad2antrr 726 |
. . . . 5
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 𝐺 ∈ Grp) |
| 27 | | simplr 769 |
. . . . 5
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 𝑋 ∈ 𝐵) |
| 28 | 26, 27, 13 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
| 29 | 25, 4, 7 | 3syl 18 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 0 ∈ 𝐵) |
| 30 | | simpr 484 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → (𝐼‘𝑋) ≤ 0 ) |
| 31 | 5, 16, 17 | omndadd 33083 |
. . . 4
⊢ ((𝐺 ∈ oMnd ∧ ((𝐼‘𝑋) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → ((𝐼‘𝑋)(+g‘𝐺)𝑋) ≤ ( 0 (+g‘𝐺)𝑋)) |
| 32 | 25, 28, 29, 27, 30, 31 | syl131anc 1385 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → ((𝐼‘𝑋)(+g‘𝐺)𝑋) ≤ ( 0 (+g‘𝐺)𝑋)) |
| 33 | 5, 17, 6, 12 | grplinv 19007 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝐼‘𝑋)(+g‘𝐺)𝑋) = 0 ) |
| 34 | 26, 27, 33 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → ((𝐼‘𝑋)(+g‘𝐺)𝑋) = 0 ) |
| 35 | 5, 17, 6 | grplid 18985 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑋) = 𝑋) |
| 36 | 26, 27, 35 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → ( 0
(+g‘𝐺)𝑋) = 𝑋) |
| 37 | 32, 34, 36 | 3brtr3d 5174 |
. 2
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ (𝐼‘𝑋) ≤ 0 ) → 0 ≤ 𝑋) |
| 38 | 24, 37 | impbida 801 |
1
⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵) → ( 0 ≤ 𝑋 ↔ (𝐼‘𝑋) ≤ 0 )) |