Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddlt Structured version   Visualization version   GIF version

Theorem ogrpaddlt 30259
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
Assertion
Ref Expression
ogrpaddlt ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍))

Proof of Theorem ogrpaddlt
StepHypRef Expression
1 isogrp 30243 . . . . 5 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 492 . . . 4 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
323ad2ant1 1167 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oMnd)
4 simp2 1171 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋𝐵𝑌𝐵𝑍𝐵))
5 simp1 1170 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oGrp)
6 simp21 1267 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
7 simp22 1268 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
8 simp3 1172 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
9 eqid 2825 . . . . . 6 (le‘𝐺) = (le‘𝐺)
10 ogrpaddlt.1 . . . . . 6 < = (lt‘𝐺)
119, 10pltle 17321 . . . . 5 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝐺)𝑌))
1211imp 397 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
135, 6, 7, 8, 12syl31anc 1496 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
14 ogrpaddlt.0 . . . 4 𝐵 = (Base‘𝐺)
15 ogrpaddlt.2 . . . 4 + = (+g𝐺)
1614, 9, 15omndadd 30247 . . 3 ((𝐺 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(le‘𝐺)𝑌) → (𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍))
173, 4, 13, 16syl3anc 1494 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍))
1810pltne 17322 . . . . 5 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
1918imp 397 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
205, 6, 7, 8, 19syl31anc 1496 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
21 ogrpgrp 30244 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
2214, 15grprcan 17816 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
2322biimpd 221 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
2421, 23sylan 575 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
2524necon3d 3020 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝑌 → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍)))
26253impia 1149 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝑌) → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))
275, 4, 20, 26syl3anc 1494 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))
28 ovex 6942 . . . 4 (𝑋 + 𝑍) ∈ V
29 ovex 6942 . . . 4 (𝑌 + 𝑍) ∈ V
309, 10pltval 17320 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋 + 𝑍) ∈ V ∧ (𝑌 + 𝑍) ∈ V) → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
3128, 29, 30mp3an23 1581 . . 3 (𝐺 ∈ oGrp → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
32313ad2ant1 1167 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
3317, 27, 32mpbir2and 704 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  Vcvv 3414   class class class wbr 4875  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  lecple 16319  ltcplt 17301  Grpcgrp 17783  oMndcomnd 30238  oGrpcogrp 30239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-riota 6871  df-ov 6913  df-0g 16462  df-plt 17318  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-omnd 30240  df-ogrp 30241
This theorem is referenced by:  ogrpaddltbi  30260  ogrpaddltrd  30261  ogrpinv0lt  30264  isarchi3  30282  archirngz  30284  archiabllem1b  30287  archiabllem2c  30290  ofldchr  30355
  Copyright terms: Public domain W3C validator