Proof of Theorem ogrpaddlt
Step | Hyp | Ref
| Expression |
1 | | isogrp 30854 |
. . . . 5
⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
2 | 1 | simprbi 500 |
. . . 4
⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
3 | 2 | 3ad2ant1 1130 |
. . 3
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oMnd) |
4 | | simp2 1134 |
. . 3
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
5 | | simp1 1133 |
. . . 4
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oGrp) |
6 | | simp21 1203 |
. . . 4
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋 ∈ 𝐵) |
7 | | simp22 1204 |
. . . 4
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑌 ∈ 𝐵) |
8 | | simp3 1135 |
. . . 4
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌) |
9 | | eqid 2758 |
. . . . . 6
⊢
(le‘𝐺) =
(le‘𝐺) |
10 | | ogrpaddlt.1 |
. . . . . 6
⊢ < =
(lt‘𝐺) |
11 | 9, 10 | pltle 17637 |
. . . . 5
⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋(le‘𝐺)𝑌)) |
12 | 11 | imp 410 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌) |
13 | 5, 6, 7, 8, 12 | syl31anc 1370 |
. . 3
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌) |
14 | | ogrpaddlt.0 |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
15 | | ogrpaddlt.2 |
. . . 4
⊢ + =
(+g‘𝐺) |
16 | 14, 9, 15 | omndadd 30858 |
. . 3
⊢ ((𝐺 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋(le‘𝐺)𝑌) → (𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍)) |
17 | 3, 4, 13, 16 | syl3anc 1368 |
. 2
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍)) |
18 | 10 | pltne 17638 |
. . . . 5
⊢ ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) |
19 | 18 | imp 410 |
. . . 4
⊢ (((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋 ≠ 𝑌) |
20 | 5, 6, 7, 8, 19 | syl31anc 1370 |
. . 3
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → 𝑋 ≠ 𝑌) |
21 | | ogrpgrp 30855 |
. . . . . 6
⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) |
22 | 14, 15 | grprcan 18204 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌)) |
23 | 22 | biimpd 232 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌)) |
24 | 21, 23 | sylan 583 |
. . . . 5
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌)) |
25 | 24 | necon3d 2972 |
. . . 4
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≠ 𝑌 → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))) |
26 | 25 | 3impia 1114 |
. . 3
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≠ 𝑌) → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍)) |
27 | 5, 4, 20, 26 | syl3anc 1368 |
. 2
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍)) |
28 | | ovex 7183 |
. . . 4
⊢ (𝑋 + 𝑍) ∈ V |
29 | | ovex 7183 |
. . . 4
⊢ (𝑌 + 𝑍) ∈ V |
30 | 9, 10 | pltval 17636 |
. . . 4
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 + 𝑍) ∈ V ∧ (𝑌 + 𝑍) ∈ V) → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍)))) |
31 | 28, 29, 30 | mp3an23 1450 |
. . 3
⊢ (𝐺 ∈ oGrp → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍)))) |
32 | 31 | 3ad2ant1 1130 |
. 2
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍)))) |
33 | 17, 27, 32 | mpbir2and 712 |
1
⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍)) |