Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddlt Structured version   Visualization version   GIF version

Theorem ogrpaddlt 30869
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
Assertion
Ref Expression
ogrpaddlt ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍))

Proof of Theorem ogrpaddlt
StepHypRef Expression
1 isogrp 30854 . . . . 5 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 500 . . . 4 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
323ad2ant1 1130 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oMnd)
4 simp2 1134 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋𝐵𝑌𝐵𝑍𝐵))
5 simp1 1133 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oGrp)
6 simp21 1203 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
7 simp22 1204 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
8 simp3 1135 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
9 eqid 2758 . . . . . 6 (le‘𝐺) = (le‘𝐺)
10 ogrpaddlt.1 . . . . . 6 < = (lt‘𝐺)
119, 10pltle 17637 . . . . 5 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝐺)𝑌))
1211imp 410 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
135, 6, 7, 8, 12syl31anc 1370 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
14 ogrpaddlt.0 . . . 4 𝐵 = (Base‘𝐺)
15 ogrpaddlt.2 . . . 4 + = (+g𝐺)
1614, 9, 15omndadd 30858 . . 3 ((𝐺 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(le‘𝐺)𝑌) → (𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍))
173, 4, 13, 16syl3anc 1368 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍))
1810pltne 17638 . . . . 5 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋𝑌))
1918imp 410 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
205, 6, 7, 8, 19syl31anc 1370 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
21 ogrpgrp 30855 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
2214, 15grprcan 18204 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌))
2322biimpd 232 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
2421, 23sylan 583 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌))
2524necon3d 2972 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝑌 → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍)))
26253impia 1114 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝑌) → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))
275, 4, 20, 26syl3anc 1368 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))
28 ovex 7183 . . . 4 (𝑋 + 𝑍) ∈ V
29 ovex 7183 . . . 4 (𝑌 + 𝑍) ∈ V
309, 10pltval 17636 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋 + 𝑍) ∈ V ∧ (𝑌 + 𝑍) ∈ V) → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
3128, 29, 30mp3an23 1450 . . 3 (𝐺 ∈ oGrp → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
32313ad2ant1 1130 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 + 𝑍) < (𝑌 + 𝑍) ↔ ((𝑋 + 𝑍)(le‘𝐺)(𝑌 + 𝑍) ∧ (𝑋 + 𝑍) ≠ (𝑌 + 𝑍))))
3317, 27, 32mpbir2and 712 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 + 𝑍) < (𝑌 + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  Vcvv 3409   class class class wbr 5032  cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  lecple 16630  ltcplt 17617  Grpcgrp 18169  oMndcomnd 30849  oGrpcogrp 30850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-riota 7108  df-ov 7153  df-0g 16773  df-plt 17634  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-omnd 30851  df-ogrp 30852
This theorem is referenced by:  ogrpaddltbi  30870  ogrpaddltrd  30871  ogrpinv0lt  30874  isarchi3  30967  archirngz  30969  archiabllem1b  30972  archiabllem2c  30975  ofldchr  31039
  Copyright terms: Public domain W3C validator