![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version GIF version |
Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ogrp 30216 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
2 | 1 | elin2 3999 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∈ wcel 2157 Grpcgrp 17738 oMndcomnd 30213 oGrpcogrp 30214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-in 3776 df-ogrp 30216 |
This theorem is referenced by: ogrpgrp 30219 ogrpinvOLD 30231 ogrpinv0le 30232 ogrpsub 30233 ogrpaddlt 30234 isarchi3 30257 archirng 30258 archirngz 30259 archiabllem1a 30261 archiabllem1b 30262 archiabllem2a 30264 archiabllem2c 30265 archiabllem2b 30266 archiabl 30268 orngsqr 30320 ornglmulle 30321 orngrmulle 30322 ofldtos 30327 suborng 30331 reofld 30356 nn0omnd 30357 |
Copyright terms: Public domain | W3C validator |