![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version GIF version |
Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ogrp 33060 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
2 | 1 | elin2 4213 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 Grpcgrp 18964 oMndcomnd 33057 oGrpcogrp 33058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ogrp 33060 |
This theorem is referenced by: ogrpgrp 33063 ogrpinv0le 33075 ogrpsub 33076 ogrpaddlt 33077 isarchi3 33177 archirng 33178 archirngz 33179 archiabllem1a 33181 archiabllem1b 33182 archiabllem2a 33184 archiabllem2c 33185 archiabllem2b 33186 archiabl 33188 orngsqr 33314 ornglmulle 33315 orngrmulle 33316 ofldtos 33321 suborng 33325 reofld 33352 nn0omnd 33353 |
Copyright terms: Public domain | W3C validator |