MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isogrp Structured version   Visualization version   GIF version

Theorem isogrp 20003
Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
isogrp (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))

Proof of Theorem isogrp
StepHypRef Expression
1 df-ogrp 20001 . 2 oGrp = (Grp ∩ oMnd)
21elin2 4154 1 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Grpcgrp 18812  oMndcomnd 19998  oGrpcogrp 19999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-in 3910  df-ogrp 20001
This theorem is referenced by:  ogrpgrp  20004  ogrpinv0le  20015  ogrpsub  20016  ogrpaddlt  20017  orngsqr  20751  ornglmulle  20752  orngrmulle  20753  ofldtos  20758  suborng  20761  zsoring  28301  isarchi3  33129  archirng  33130  archirngz  33131  archiabllem1a  33133  archiabllem1b  33134  archiabllem2a  33136  archiabllem2c  33137  archiabllem2b  33138  archiabl  33140  reofld  33281  nn0omnd  33282
  Copyright terms: Public domain W3C validator