Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version GIF version |
Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ogrp 31354 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
2 | 1 | elin2 4134 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2101 Grpcgrp 18605 oMndcomnd 31351 oGrpcogrp 31352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3436 df-in 3896 df-ogrp 31354 |
This theorem is referenced by: ogrpgrp 31357 ogrpinv0le 31369 ogrpsub 31370 ogrpaddlt 31371 isarchi3 31469 archirng 31470 archirngz 31471 archiabllem1a 31473 archiabllem1b 31474 archiabllem2a 31476 archiabllem2c 31477 archiabllem2b 31478 archiabl 31480 orngsqr 31531 ornglmulle 31532 orngrmulle 31533 ofldtos 31538 suborng 31542 reofld 31572 nn0omnd 31573 |
Copyright terms: Public domain | W3C validator |