| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version GIF version | ||
| Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ogrp 33014 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
| 2 | 1 | elin2 4166 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18865 oMndcomnd 33011 oGrpcogrp 33012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ogrp 33014 |
| This theorem is referenced by: ogrpgrp 33017 ogrpinv0le 33029 ogrpsub 33030 ogrpaddlt 33031 isarchi3 33141 archirng 33142 archirngz 33143 archiabllem1a 33145 archiabllem1b 33146 archiabllem2a 33148 archiabllem2c 33149 archiabllem2b 33150 archiabl 33152 orngsqr 33282 ornglmulle 33283 orngrmulle 33284 ofldtos 33289 suborng 33293 reofld 33315 nn0omnd 33316 |
| Copyright terms: Public domain | W3C validator |