| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isogrp | Structured version Visualization version GIF version | ||
| Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ogrp 20034 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
| 2 | 1 | elin2 4150 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Grpcgrp 18846 oMndcomnd 20031 oGrpcogrp 20032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ogrp 20034 |
| This theorem is referenced by: ogrpgrp 20037 ogrpinv0le 20048 ogrpsub 20049 ogrpaddlt 20050 orngsqr 20781 ornglmulle 20782 orngrmulle 20783 ofldtos 20788 suborng 20791 zsoring 28332 isarchi3 33156 archirng 33157 archirngz 33158 archiabllem1a 33160 archiabllem1b 33161 archiabllem2a 33163 archiabllem2c 33164 archiabllem2b 33165 archiabl 33167 reofld 33308 nn0omnd 33309 |
| Copyright terms: Public domain | W3C validator |