| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isogrp | Structured version Visualization version GIF version | ||
| Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ogrp 20001 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
| 2 | 1 | elin2 4154 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18812 oMndcomnd 19998 oGrpcogrp 19999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-ogrp 20001 |
| This theorem is referenced by: ogrpgrp 20004 ogrpinv0le 20015 ogrpsub 20016 ogrpaddlt 20017 orngsqr 20751 ornglmulle 20752 orngrmulle 20753 ofldtos 20758 suborng 20761 zsoring 28301 isarchi3 33129 archirng 33130 archirngz 33131 archiabllem1a 33133 archiabllem1b 33134 archiabllem2a 33136 archiabllem2c 33137 archiabllem2b 33138 archiabl 33140 reofld 33281 nn0omnd 33282 |
| Copyright terms: Public domain | W3C validator |