| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version GIF version | ||
| Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ogrp 32987 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
| 2 | 1 | elin2 4162 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18841 oMndcomnd 32984 oGrpcogrp 32985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ogrp 32987 |
| This theorem is referenced by: ogrpgrp 32990 ogrpinv0le 33002 ogrpsub 33003 ogrpaddlt 33004 isarchi3 33114 archirng 33115 archirngz 33116 archiabllem1a 33118 archiabllem1b 33119 archiabllem2a 33121 archiabllem2c 33122 archiabllem2b 33123 archiabl 33125 orngsqr 33255 ornglmulle 33256 orngrmulle 33257 ofldtos 33262 suborng 33266 reofld 33288 nn0omnd 33289 |
| Copyright terms: Public domain | W3C validator |