| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version GIF version | ||
| Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ogrp 33073 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
| 2 | 1 | elin2 4183 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Grpcgrp 18921 oMndcomnd 33070 oGrpcogrp 33071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-ogrp 33073 |
| This theorem is referenced by: ogrpgrp 33076 ogrpinv0le 33088 ogrpsub 33089 ogrpaddlt 33090 isarchi3 33190 archirng 33191 archirngz 33192 archiabllem1a 33194 archiabllem1b 33195 archiabllem2a 33197 archiabllem2c 33198 archiabllem2b 33199 archiabl 33201 orngsqr 33331 ornglmulle 33332 orngrmulle 33333 ofldtos 33338 suborng 33342 reofld 33364 nn0omnd 33365 |
| Copyright terms: Public domain | W3C validator |