Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version GIF version |
Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ogrp 30852 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
2 | 1 | elin2 4102 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2111 Grpcgrp 18169 oMndcomnd 30849 oGrpcogrp 30850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ogrp 30852 |
This theorem is referenced by: ogrpgrp 30855 ogrpinv0le 30867 ogrpsub 30868 ogrpaddlt 30869 isarchi3 30967 archirng 30968 archirngz 30969 archiabllem1a 30971 archiabllem1b 30972 archiabllem2a 30974 archiabllem2c 30975 archiabllem2b 30976 archiabl 30978 orngsqr 31029 ornglmulle 31030 orngrmulle 31031 ofldtos 31036 suborng 31040 reofld 31065 nn0omnd 31066 |
Copyright terms: Public domain | W3C validator |