![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isogrp | Structured version Visualization version GIF version |
Description: A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isogrp | ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ogrp 32780 | . 2 ⊢ oGrp = (Grp ∩ oMnd) | |
2 | 1 | elin2 4197 | 1 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2099 Grpcgrp 18889 oMndcomnd 32777 oGrpcogrp 32778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ogrp 32780 |
This theorem is referenced by: ogrpgrp 32783 ogrpinv0le 32795 ogrpsub 32796 ogrpaddlt 32797 isarchi3 32895 archirng 32896 archirngz 32897 archiabllem1a 32899 archiabllem1b 32900 archiabllem2a 32902 archiabllem2c 32903 archiabllem2b 32904 archiabl 32906 orngsqr 33019 ornglmulle 33020 orngrmulle 33021 ofldtos 33026 suborng 33030 reofld 33056 nn0omnd 33057 |
Copyright terms: Public domain | W3C validator |