Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpsublt Structured version   Visualization version   GIF version

Theorem ogrpsublt 31249
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpsublt.0 𝐵 = (Base‘𝐺)
ogrpsublt.1 < = (lt‘𝐺)
ogrpsublt.2 = (-g𝐺)
Assertion
Ref Expression
ogrpsublt ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) < (𝑌 𝑍))

Proof of Theorem ogrpsublt
StepHypRef Expression
1 simp3 1136 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
2 simp1 1134 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oGrp)
3 simp21 1204 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
4 simp22 1205 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
5 eqid 2738 . . . . . . 7 (le‘𝐺) = (le‘𝐺)
6 ogrpsublt.1 . . . . . . 7 < = (lt‘𝐺)
75, 6pltval 17965 . . . . . 6 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐺)𝑌𝑋𝑌)))
82, 3, 4, 7syl3anc 1369 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐺)𝑌𝑋𝑌)))
91, 8mpbid 231 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋(le‘𝐺)𝑌𝑋𝑌))
109simpld 494 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
11 ogrpsublt.0 . . . 4 𝐵 = (Base‘𝐺)
12 ogrpsublt.2 . . . 4 = (-g𝐺)
1311, 5, 12ogrpsub 31244 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(le‘𝐺)𝑌) → (𝑋 𝑍)(le‘𝐺)(𝑌 𝑍))
1410, 13syld3an3 1407 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍)(le‘𝐺)(𝑌 𝑍))
159simprd 495 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
16 ogrpgrp 31231 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
172, 16syl 17 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ Grp)
18 simp23 1206 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑍𝐵)
1911, 12grpsubrcan 18571 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
2017, 3, 4, 18, 19syl13anc 1370 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
2120necon3bid 2987 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) ≠ (𝑌 𝑍) ↔ 𝑋𝑌))
2215, 21mpbird 256 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) ≠ (𝑌 𝑍))
2311, 12grpsubcl 18570 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
2417, 3, 18, 23syl3anc 1369 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) ∈ 𝐵)
2511, 12grpsubcl 18570 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
2617, 4, 18, 25syl3anc 1369 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑌 𝑍) ∈ 𝐵)
275, 6pltval 17965 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋 𝑍) ∈ 𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝑋 𝑍) < (𝑌 𝑍) ↔ ((𝑋 𝑍)(le‘𝐺)(𝑌 𝑍) ∧ (𝑋 𝑍) ≠ (𝑌 𝑍))))
282, 24, 26, 27syl3anc 1369 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) < (𝑌 𝑍) ↔ ((𝑋 𝑍)(le‘𝐺)(𝑌 𝑍) ∧ (𝑋 𝑍) ≠ (𝑌 𝑍))))
2914, 22, 28mpbir2and 709 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) < (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  ltcplt 17941  Grpcgrp 18492  -gcsg 18494  oGrpcogrp 31226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-0g 17069  df-plt 17963  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-omnd 31227  df-ogrp 31228
This theorem is referenced by:  archiabllem1a  31347  archiabllem2a  31350  archiabllem2c  31351
  Copyright terms: Public domain W3C validator