Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpsublt Structured version   Visualization version   GIF version

Theorem ogrpsublt 30724
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpsublt.0 𝐵 = (Base‘𝐺)
ogrpsublt.1 < = (lt‘𝐺)
ogrpsublt.2 = (-g𝐺)
Assertion
Ref Expression
ogrpsublt ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) < (𝑌 𝑍))

Proof of Theorem ogrpsublt
StepHypRef Expression
1 simp3 1134 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
2 simp1 1132 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ oGrp)
3 simp21 1202 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝐵)
4 simp22 1203 . . . . . 6 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
5 eqid 2823 . . . . . . 7 (le‘𝐺) = (le‘𝐺)
6 ogrpsublt.1 . . . . . . 7 < = (lt‘𝐺)
75, 6pltval 17572 . . . . . 6 ((𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐺)𝑌𝑋𝑌)))
82, 3, 4, 7syl3anc 1367 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐺)𝑌𝑋𝑌)))
91, 8mpbid 234 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋(le‘𝐺)𝑌𝑋𝑌))
109simpld 497 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋(le‘𝐺)𝑌)
11 ogrpsublt.0 . . . 4 𝐵 = (Base‘𝐺)
12 ogrpsublt.2 . . . 4 = (-g𝐺)
1311, 5, 12ogrpsub 30719 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋(le‘𝐺)𝑌) → (𝑋 𝑍)(le‘𝐺)(𝑌 𝑍))
1410, 13syld3an3 1405 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍)(le‘𝐺)(𝑌 𝑍))
159simprd 498 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
16 ogrpgrp 30706 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
172, 16syl 17 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝐺 ∈ Grp)
18 simp23 1204 . . . . 5 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → 𝑍𝐵)
1911, 12grpsubrcan 18182 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
2017, 3, 4, 18, 19syl13anc 1368 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) = (𝑌 𝑍) ↔ 𝑋 = 𝑌))
2120necon3bid 3062 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) ≠ (𝑌 𝑍) ↔ 𝑋𝑌))
2215, 21mpbird 259 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) ≠ (𝑌 𝑍))
2311, 12grpsubcl 18181 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
2417, 3, 18, 23syl3anc 1367 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) ∈ 𝐵)
2511, 12grpsubcl 18181 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
2617, 4, 18, 25syl3anc 1367 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑌 𝑍) ∈ 𝐵)
275, 6pltval 17572 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋 𝑍) ∈ 𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝑋 𝑍) < (𝑌 𝑍) ↔ ((𝑋 𝑍)(le‘𝐺)(𝑌 𝑍) ∧ (𝑋 𝑍) ≠ (𝑌 𝑍))))
282, 24, 26, 27syl3anc 1367 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → ((𝑋 𝑍) < (𝑌 𝑍) ↔ ((𝑋 𝑍)(le‘𝐺)(𝑌 𝑍) ∧ (𝑋 𝑍) ≠ (𝑌 𝑍))))
2914, 22, 28mpbir2and 711 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 < 𝑌) → (𝑋 𝑍) < (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  ltcplt 17553  Grpcgrp 18105  -gcsg 18107  oGrpcogrp 30701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-0g 16717  df-plt 17570  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-omnd 30702  df-ogrp 30703
This theorem is referenced by:  archiabllem1a  30822  archiabllem2a  30825  archiabllem2c  30826
  Copyright terms: Public domain W3C validator