Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinvlt Structured version   Visualization version   GIF version

Theorem ogrpinvlt 32228
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpinvlt.0 𝐵 = (Base‘𝐺)
ogrpinvlt.1 < = (lt‘𝐺)
ogrpinvlt.2 𝐼 = (invg𝐺)
Assertion
Ref Expression
ogrpinvlt (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝐼𝑌) < (𝐼𝑋)))

Proof of Theorem ogrpinvlt
StepHypRef Expression
1 simp1l 1197 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ oGrp)
2 simp2 1137 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1138 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 ogrpgrp 32208 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
51, 4syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
6 ogrpinvlt.0 . . . . . 6 𝐵 = (Base‘𝐺)
7 ogrpinvlt.2 . . . . . 6 𝐼 = (invg𝐺)
86, 7grpinvcl 18868 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝐼𝑌) ∈ 𝐵)
95, 3, 8syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝐼𝑌) ∈ 𝐵)
10 ogrpinvlt.1 . . . . 5 < = (lt‘𝐺)
11 eqid 2732 . . . . 5 (+g𝐺) = (+g𝐺)
126, 10, 11ogrpaddltbi 32223 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵 ∧ (𝐼𝑌) ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋(+g𝐺)(𝐼𝑌)) < (𝑌(+g𝐺)(𝐼𝑌))))
131, 2, 3, 9, 12syl13anc 1372 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(+g𝐺)(𝐼𝑌)) < (𝑌(+g𝐺)(𝐼𝑌))))
14 eqid 2732 . . . . . 6 (0g𝐺) = (0g𝐺)
156, 11, 14, 7grprinv 18871 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌(+g𝐺)(𝐼𝑌)) = (0g𝐺))
165, 3, 15syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑌(+g𝐺)(𝐼𝑌)) = (0g𝐺))
1716breq2d 5159 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(+g𝐺)(𝐼𝑌)) < (𝑌(+g𝐺)(𝐼𝑌)) ↔ (𝑋(+g𝐺)(𝐼𝑌)) < (0g𝐺)))
18 simp1r 1198 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (oppg𝐺) ∈ oGrp)
196, 11grpcl 18823 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐼𝑌) ∈ 𝐵) → (𝑋(+g𝐺)(𝐼𝑌)) ∈ 𝐵)
205, 2, 9, 19syl3anc 1371 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g𝐺)(𝐼𝑌)) ∈ 𝐵)
216, 14grpidcl 18846 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
221, 4, 213syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (0g𝐺) ∈ 𝐵)
236, 7grpinvcl 18868 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
245, 2, 23syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝐼𝑋) ∈ 𝐵)
256, 10, 11, 1, 18, 20, 22, 24ogrpaddltrbid 32225 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(+g𝐺)(𝐼𝑌)) < (0g𝐺) ↔ ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))) < ((𝐼𝑋)(+g𝐺)(0g𝐺))))
2613, 17, 253bitrd 304 . 2 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))) < ((𝐼𝑋)(+g𝐺)(0g𝐺))))
276, 11, 14, 7grplinv 18870 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = (0g𝐺))
285, 2, 27syl2anc 584 . . . . 5 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = (0g𝐺))
2928oveq1d 7420 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (((𝐼𝑋)(+g𝐺)𝑋)(+g𝐺)(𝐼𝑌)) = ((0g𝐺)(+g𝐺)(𝐼𝑌)))
306, 11grpass 18824 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝐼𝑋) ∈ 𝐵𝑋𝐵 ∧ (𝐼𝑌) ∈ 𝐵)) → (((𝐼𝑋)(+g𝐺)𝑋)(+g𝐺)(𝐼𝑌)) = ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))))
315, 24, 2, 9, 30syl13anc 1372 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (((𝐼𝑋)(+g𝐺)𝑋)(+g𝐺)(𝐼𝑌)) = ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))))
326, 11, 14grplid 18848 . . . . 5 ((𝐺 ∈ Grp ∧ (𝐼𝑌) ∈ 𝐵) → ((0g𝐺)(+g𝐺)(𝐼𝑌)) = (𝐼𝑌))
335, 9, 32syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺)(+g𝐺)(𝐼𝑌)) = (𝐼𝑌))
3429, 31, 333eqtr3d 2780 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))) = (𝐼𝑌))
356, 11, 14grprid 18849 . . . 4 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ((𝐼𝑋)(+g𝐺)(0g𝐺)) = (𝐼𝑋))
365, 24, 35syl2anc 584 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝐼𝑋)(+g𝐺)(0g𝐺)) = (𝐼𝑋))
3734, 36breq12d 5160 . 2 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))) < ((𝐼𝑋)(+g𝐺)(0g𝐺)) ↔ (𝐼𝑌) < (𝐼𝑋)))
3826, 37bitrd 278 1 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝐼𝑌) < (𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5147  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  ltcplt 18257  Grpcgrp 18815  invgcminusg 18816  oppgcoppg 19203  oGrpcogrp 32203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-dec 12674  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-ple 17213  df-0g 17383  df-plt 18279  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-oppg 19204  df-omnd 32204  df-ogrp 32205
This theorem is referenced by:  archirngz  32322  archiabllem2c  32328
  Copyright terms: Public domain W3C validator