Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinvlt Structured version   Visualization version   GIF version

Theorem ogrpinvlt 33010
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpinvlt.0 𝐵 = (Base‘𝐺)
ogrpinvlt.1 < = (lt‘𝐺)
ogrpinvlt.2 𝐼 = (invg𝐺)
Assertion
Ref Expression
ogrpinvlt (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝐼𝑌) < (𝐼𝑋)))

Proof of Theorem ogrpinvlt
StepHypRef Expression
1 simp1l 1198 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ oGrp)
2 simp2 1137 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1138 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 ogrpgrp 32990 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
51, 4syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
6 ogrpinvlt.0 . . . . . 6 𝐵 = (Base‘𝐺)
7 ogrpinvlt.2 . . . . . 6 𝐼 = (invg𝐺)
86, 7grpinvcl 18895 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝐼𝑌) ∈ 𝐵)
95, 3, 8syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝐼𝑌) ∈ 𝐵)
10 ogrpinvlt.1 . . . . 5 < = (lt‘𝐺)
11 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
126, 10, 11ogrpaddltbi 33005 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵 ∧ (𝐼𝑌) ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋(+g𝐺)(𝐼𝑌)) < (𝑌(+g𝐺)(𝐼𝑌))))
131, 2, 3, 9, 12syl13anc 1374 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(+g𝐺)(𝐼𝑌)) < (𝑌(+g𝐺)(𝐼𝑌))))
14 eqid 2729 . . . . . 6 (0g𝐺) = (0g𝐺)
156, 11, 14, 7grprinv 18898 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌(+g𝐺)(𝐼𝑌)) = (0g𝐺))
165, 3, 15syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑌(+g𝐺)(𝐼𝑌)) = (0g𝐺))
1716breq2d 5114 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(+g𝐺)(𝐼𝑌)) < (𝑌(+g𝐺)(𝐼𝑌)) ↔ (𝑋(+g𝐺)(𝐼𝑌)) < (0g𝐺)))
18 simp1r 1199 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (oppg𝐺) ∈ oGrp)
196, 11grpcl 18849 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐼𝑌) ∈ 𝐵) → (𝑋(+g𝐺)(𝐼𝑌)) ∈ 𝐵)
205, 2, 9, 19syl3anc 1373 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g𝐺)(𝐼𝑌)) ∈ 𝐵)
216, 14grpidcl 18873 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
221, 4, 213syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (0g𝐺) ∈ 𝐵)
236, 7grpinvcl 18895 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
245, 2, 23syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝐼𝑋) ∈ 𝐵)
256, 10, 11, 1, 18, 20, 22, 24ogrpaddltrbid 33007 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(+g𝐺)(𝐼𝑌)) < (0g𝐺) ↔ ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))) < ((𝐼𝑋)(+g𝐺)(0g𝐺))))
2613, 17, 253bitrd 305 . 2 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))) < ((𝐼𝑋)(+g𝐺)(0g𝐺))))
276, 11, 14, 7grplinv 18897 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = (0g𝐺))
285, 2, 27syl2anc 584 . . . . 5 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = (0g𝐺))
2928oveq1d 7384 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (((𝐼𝑋)(+g𝐺)𝑋)(+g𝐺)(𝐼𝑌)) = ((0g𝐺)(+g𝐺)(𝐼𝑌)))
306, 11grpass 18850 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝐼𝑋) ∈ 𝐵𝑋𝐵 ∧ (𝐼𝑌) ∈ 𝐵)) → (((𝐼𝑋)(+g𝐺)𝑋)(+g𝐺)(𝐼𝑌)) = ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))))
315, 24, 2, 9, 30syl13anc 1374 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (((𝐼𝑋)(+g𝐺)𝑋)(+g𝐺)(𝐼𝑌)) = ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))))
326, 11, 14grplid 18875 . . . . 5 ((𝐺 ∈ Grp ∧ (𝐼𝑌) ∈ 𝐵) → ((0g𝐺)(+g𝐺)(𝐼𝑌)) = (𝐼𝑌))
335, 9, 32syl2anc 584 . . . 4 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺)(+g𝐺)(𝐼𝑌)) = (𝐼𝑌))
3429, 31, 333eqtr3d 2772 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))) = (𝐼𝑌))
356, 11, 14grprid 18876 . . . 4 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ((𝐼𝑋)(+g𝐺)(0g𝐺)) = (𝐼𝑋))
365, 24, 35syl2anc 584 . . 3 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → ((𝐼𝑋)(+g𝐺)(0g𝐺)) = (𝐼𝑋))
3734, 36breq12d 5115 . 2 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (((𝐼𝑋)(+g𝐺)(𝑋(+g𝐺)(𝐼𝑌))) < ((𝐼𝑋)(+g𝐺)(0g𝐺)) ↔ (𝐼𝑌) < (𝐼𝑋)))
3826, 37bitrd 279 1 (((𝐺 ∈ oGrp ∧ (oppg𝐺) ∈ oGrp) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝐼𝑌) < (𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  ltcplt 18245  Grpcgrp 18841  invgcminusg 18842  oppgcoppg 19253  oGrpcogrp 32985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-ple 17216  df-0g 17380  df-plt 18265  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-oppg 19254  df-omnd 32986  df-ogrp 32987
This theorem is referenced by:  archirngz  33116  archiabllem2c  33122
  Copyright terms: Public domain W3C validator