Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1a Structured version   Visualization version   GIF version

Theorem archiabllem1a 30820
Description: Lemma for archiabl 30827: In case an archimedean group 𝑊 admits a smallest positive element 𝑈, then any positive element 𝑋 of 𝑊 can be written as (𝑛 · 𝑈) with 𝑛 ∈ ℕ. Since the reciprocal holds for negative elements, 𝑊 is then isomorphic to . (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
archiabllem1a.x (𝜑𝑋𝐵)
archiabllem1a.c (𝜑0 < 𝑋)
Assertion
Ref Expression
archiabllem1a (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥   𝑛,𝑋,𝑥   𝜑,𝑛,𝑥   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hint:   (𝑛)

Proof of Theorem archiabllem1a
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℕ0)
2 nn0p1nn 11937 . . . 4 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℕ)
4 archiabllem1.u . . . . . . . 8 (𝜑𝑈𝐵)
54ad2antrr 724 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈𝐵)
6 archiabllem.b . . . . . . . 8 𝐵 = (Base‘𝑊)
7 archiabllem.m . . . . . . . 8 · = (.g𝑊)
86, 7mulg1 18235 . . . . . . 7 (𝑈𝐵 → (1 · 𝑈) = 𝑈)
95, 8syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 · 𝑈) = 𝑈)
109oveq1d 7171 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
11 archiabllem.g . . . . . . . 8 (𝜑𝑊 ∈ oGrp)
1211ad2antrr 724 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ oGrp)
13 ogrpgrp 30704 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
1412, 13syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Grp)
15 1zzd 12014 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℤ)
161nn0zd 12086 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℤ)
17 eqid 2821 . . . . . . 7 (+g𝑊) = (+g𝑊)
186, 7, 17mulgdir 18259 . . . . . 6 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1914, 15, 16, 5, 18syl13anc 1368 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
20 isogrp 30703 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2120simprbi 499 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
22 omndtos 30706 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
23 tospos 30645 . . . . . . . . 9 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
2421, 22, 233syl 18 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Poset)
2512, 24syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Poset)
26 archiabllem1a.x . . . . . . . . 9 (𝜑𝑋𝐵)
2726ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋𝐵)
286, 7mulgcl 18245 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵) → (𝑚 · 𝑈) ∈ 𝐵)
2914, 16, 5, 28syl3anc 1367 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) ∈ 𝐵)
30 eqid 2821 . . . . . . . . 9 (-g𝑊) = (-g𝑊)
316, 30grpsubcl 18179 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3214, 27, 29, 31syl3anc 1367 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3316peano2zd 12091 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℤ)
346, 7mulgcl 18245 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑈𝐵) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
3514, 33, 5, 34syl3anc 1367 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
36 simprr 771 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 ((𝑚 + 1) · 𝑈))
37 archiabllem.e . . . . . . . . . 10 = (le‘𝑊)
386, 37, 30ogrpsub 30717 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ (𝑋𝐵 ∧ ((𝑚 + 1) · 𝑈) ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ 𝑋 ((𝑚 + 1) · 𝑈)) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
3912, 27, 35, 29, 36, 38syl131anc 1379 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
401nn0cnd 11958 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℂ)
41 1cnd 10636 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℂ)
4240, 41pncan2d 10999 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) − 𝑚) = 1)
4342oveq1d 7171 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (1 · 𝑈))
446, 7, 30mulgsubdir 18267 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4514, 33, 16, 5, 44syl13anc 1368 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4643, 45, 93eqtr3d 2864 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
4739, 46breqtrd 5092 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈)
48 archiabllem1.s . . . . . . . . . . 11 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
49483expia 1117 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ( 0 < 𝑥𝑈 𝑥))
5049ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
5150ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
52 archiabllem.0 . . . . . . . . . . 11 0 = (0g𝑊)
536, 52, 30grpsubid 18183 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
5414, 29, 53syl2anc 586 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
55 simprl 769 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) < 𝑋)
56 archiabllem.t . . . . . . . . . . 11 < = (lt‘𝑊)
576, 56, 30ogrpsublt 30722 . . . . . . . . . 10 ((𝑊 ∈ oGrp ∧ ((𝑚 · 𝑈) ∈ 𝐵𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ (𝑚 · 𝑈) < 𝑋) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5812, 29, 27, 29, 55, 57syl131anc 1379 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5954, 58eqbrtrrd 5090 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)))
60 breq2 5070 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → ( 0 < 𝑥0 < (𝑋(-g𝑊)(𝑚 · 𝑈))))
61 breq2 5070 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (𝑈 𝑥𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))))
6260, 61imbi12d 347 . . . . . . . . 9 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (( 0 < 𝑥𝑈 𝑥) ↔ ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6362rspcv 3618 . . . . . . . 8 ((𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵 → (∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥) → ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6432, 51, 59, 63syl3c 66 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))
656, 37posasymb 17562 . . . . . . . 8 ((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) → (((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))) ↔ (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈))
6665biimpa 479 . . . . . . 7 (((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) ∧ ((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6725, 32, 5, 47, 64, 66syl32anc 1374 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6867oveq1d 7171 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
6910, 19, 683eqtr4rd 2867 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = ((1 + 𝑚) · 𝑈))
706, 17, 30grpnpcan 18191 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7114, 27, 29, 70syl3anc 1367 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7241, 40addcomd 10842 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 + 𝑚) = (𝑚 + 1))
7372oveq1d 7171 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((𝑚 + 1) · 𝑈))
7469, 71, 733eqtr3d 2864 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 = ((𝑚 + 1) · 𝑈))
75 oveq1 7163 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑈) = ((𝑚 + 1) · 𝑈))
7675rspceeqv 3638 . . 3 (((𝑚 + 1) ∈ ℕ ∧ 𝑋 = ((𝑚 + 1) · 𝑈)) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
773, 74, 76syl2anc 586 . 2 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
78 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
79 archiabllem1.p . . 3 (𝜑0 < 𝑈)
80 archiabllem1a.c . . 3 (𝜑0 < 𝑋)
816, 52, 56, 37, 7, 11, 78, 4, 26, 79, 80archirng 30817 . 2 (𝜑 → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈)))
8277, 81r19.29a 3289 1 (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  1c1 10538   + caddc 10540  cmin 10870  cn 11638  0cn0 11898  cz 11982  Basecbs 16483  +gcplusg 16565  lecple 16572  0gc0g 16713  Posetcpo 17550  ltcplt 17551  Tosetctos 17643  Grpcgrp 18103  -gcsg 18105  .gcmg 18224  oMndcomnd 30698  oGrpcogrp 30699  Archicarchi 30806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-seq 13371  df-0g 16715  df-proset 17538  df-poset 17556  df-plt 17568  df-toset 17644  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-omnd 30700  df-ogrp 30701  df-inftm 30807  df-archi 30808
This theorem is referenced by:  archiabllem1b  30821
  Copyright terms: Public domain W3C validator