Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1a Structured version   Visualization version   GIF version

Theorem archiabllem1a 31164
Description: Lemma for archiabl 31171: In case an archimedean group 𝑊 admits a smallest positive element 𝑈, then any positive element 𝑋 of 𝑊 can be written as (𝑛 · 𝑈) with 𝑛 ∈ ℕ. Since the reciprocal holds for negative elements, 𝑊 is then isomorphic to . (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
archiabllem1a.x (𝜑𝑋𝐵)
archiabllem1a.c (𝜑0 < 𝑋)
Assertion
Ref Expression
archiabllem1a (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥   𝑛,𝑋,𝑥   𝜑,𝑛,𝑥   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hint:   (𝑛)

Proof of Theorem archiabllem1a
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 769 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℕ0)
2 nn0p1nn 12129 . . . 4 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℕ)
4 archiabllem1.u . . . . . . . 8 (𝜑𝑈𝐵)
54ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈𝐵)
6 archiabllem.b . . . . . . . 8 𝐵 = (Base‘𝑊)
7 archiabllem.m . . . . . . . 8 · = (.g𝑊)
86, 7mulg1 18499 . . . . . . 7 (𝑈𝐵 → (1 · 𝑈) = 𝑈)
95, 8syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 · 𝑈) = 𝑈)
109oveq1d 7228 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
11 archiabllem.g . . . . . . . 8 (𝜑𝑊 ∈ oGrp)
1211ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ oGrp)
13 ogrpgrp 31048 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
1412, 13syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Grp)
15 1zzd 12208 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℤ)
161nn0zd 12280 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℤ)
17 eqid 2737 . . . . . . 7 (+g𝑊) = (+g𝑊)
186, 7, 17mulgdir 18523 . . . . . 6 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1914, 15, 16, 5, 18syl13anc 1374 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
20 isogrp 31047 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2120simprbi 500 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
22 omndtos 31050 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
23 tospos 17926 . . . . . . . . 9 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
2421, 22, 233syl 18 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Poset)
2512, 24syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Poset)
26 archiabllem1a.x . . . . . . . . 9 (𝜑𝑋𝐵)
2726ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋𝐵)
286, 7mulgcl 18509 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵) → (𝑚 · 𝑈) ∈ 𝐵)
2914, 16, 5, 28syl3anc 1373 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) ∈ 𝐵)
30 eqid 2737 . . . . . . . . 9 (-g𝑊) = (-g𝑊)
316, 30grpsubcl 18443 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3214, 27, 29, 31syl3anc 1373 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3316peano2zd 12285 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℤ)
346, 7mulgcl 18509 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑈𝐵) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
3514, 33, 5, 34syl3anc 1373 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
36 simprr 773 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 ((𝑚 + 1) · 𝑈))
37 archiabllem.e . . . . . . . . . 10 = (le‘𝑊)
386, 37, 30ogrpsub 31061 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ (𝑋𝐵 ∧ ((𝑚 + 1) · 𝑈) ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ 𝑋 ((𝑚 + 1) · 𝑈)) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
3912, 27, 35, 29, 36, 38syl131anc 1385 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
401nn0cnd 12152 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℂ)
41 1cnd 10828 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℂ)
4240, 41pncan2d 11191 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) − 𝑚) = 1)
4342oveq1d 7228 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (1 · 𝑈))
446, 7, 30mulgsubdir 18531 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4514, 33, 16, 5, 44syl13anc 1374 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4643, 45, 93eqtr3d 2785 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
4739, 46breqtrd 5079 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈)
48 archiabllem1.s . . . . . . . . . . 11 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
49483expia 1123 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ( 0 < 𝑥𝑈 𝑥))
5049ralrimiva 3105 . . . . . . . . 9 (𝜑 → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
5150ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
52 archiabllem.0 . . . . . . . . . . 11 0 = (0g𝑊)
536, 52, 30grpsubid 18447 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
5414, 29, 53syl2anc 587 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
55 simprl 771 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) < 𝑋)
56 archiabllem.t . . . . . . . . . . 11 < = (lt‘𝑊)
576, 56, 30ogrpsublt 31066 . . . . . . . . . 10 ((𝑊 ∈ oGrp ∧ ((𝑚 · 𝑈) ∈ 𝐵𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ (𝑚 · 𝑈) < 𝑋) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5812, 29, 27, 29, 55, 57syl131anc 1385 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5954, 58eqbrtrrd 5077 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)))
60 breq2 5057 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → ( 0 < 𝑥0 < (𝑋(-g𝑊)(𝑚 · 𝑈))))
61 breq2 5057 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (𝑈 𝑥𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))))
6260, 61imbi12d 348 . . . . . . . . 9 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (( 0 < 𝑥𝑈 𝑥) ↔ ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6362rspcv 3532 . . . . . . . 8 ((𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵 → (∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥) → ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6432, 51, 59, 63syl3c 66 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))
656, 37posasymb 17826 . . . . . . . 8 ((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) → (((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))) ↔ (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈))
6665biimpa 480 . . . . . . 7 (((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) ∧ ((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6725, 32, 5, 47, 64, 66syl32anc 1380 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6867oveq1d 7228 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
6910, 19, 683eqtr4rd 2788 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = ((1 + 𝑚) · 𝑈))
706, 17, 30grpnpcan 18455 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7114, 27, 29, 70syl3anc 1373 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7241, 40addcomd 11034 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 + 𝑚) = (𝑚 + 1))
7372oveq1d 7228 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((𝑚 + 1) · 𝑈))
7469, 71, 733eqtr3d 2785 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 = ((𝑚 + 1) · 𝑈))
75 oveq1 7220 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑈) = ((𝑚 + 1) · 𝑈))
7675rspceeqv 3552 . . 3 (((𝑚 + 1) ∈ ℕ ∧ 𝑋 = ((𝑚 + 1) · 𝑈)) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
773, 74, 76syl2anc 587 . 2 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
78 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
79 archiabllem1.p . . 3 (𝜑0 < 𝑈)
80 archiabllem1a.c . . 3 (𝜑0 < 𝑋)
816, 52, 56, 37, 7, 11, 78, 4, 26, 79, 80archirng 31161 . 2 (𝜑 → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈)))
8277, 81r19.29a 3208 1 (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  1c1 10730   + caddc 10732  cmin 11062  cn 11830  0cn0 12090  cz 12176  Basecbs 16760  +gcplusg 16802  lecple 16809  0gc0g 16944  Posetcpo 17814  ltcplt 17815  Tosetctos 17922  Grpcgrp 18365  -gcsg 18367  .gcmg 18488  oMndcomnd 31042  oGrpcogrp 31043  Archicarchi 31150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-seq 13575  df-0g 16946  df-proset 17802  df-poset 17820  df-plt 17836  df-toset 17923  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-omnd 31044  df-ogrp 31045  df-inftm 31151  df-archi 31152
This theorem is referenced by:  archiabllem1b  31165
  Copyright terms: Public domain W3C validator