Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1a Structured version   Visualization version   GIF version

Theorem archiabllem1a 32027
Description: Lemma for archiabl 32034: In case an archimedean group 𝑊 admits a smallest positive element 𝑈, then any positive element 𝑋 of 𝑊 can be written as (𝑛 · 𝑈) with 𝑛 ∈ ℕ. Since the reciprocal holds for negative elements, 𝑊 is then isomorphic to . (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
archiabllem1a.x (𝜑𝑋𝐵)
archiabllem1a.c (𝜑0 < 𝑋)
Assertion
Ref Expression
archiabllem1a (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥   𝑛,𝑋,𝑥   𝜑,𝑛,𝑥   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hint:   (𝑛)

Proof of Theorem archiabllem1a
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℕ0)
2 nn0p1nn 12452 . . . 4 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℕ)
4 archiabllem1.u . . . . . . . 8 (𝜑𝑈𝐵)
54ad2antrr 724 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈𝐵)
6 archiabllem.b . . . . . . . 8 𝐵 = (Base‘𝑊)
7 archiabllem.m . . . . . . . 8 · = (.g𝑊)
86, 7mulg1 18883 . . . . . . 7 (𝑈𝐵 → (1 · 𝑈) = 𝑈)
95, 8syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 · 𝑈) = 𝑈)
109oveq1d 7372 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
11 archiabllem.g . . . . . . . 8 (𝜑𝑊 ∈ oGrp)
1211ad2antrr 724 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ oGrp)
13 ogrpgrp 31911 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
1412, 13syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Grp)
15 1zzd 12534 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℤ)
161nn0zd 12525 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℤ)
17 eqid 2736 . . . . . . 7 (+g𝑊) = (+g𝑊)
186, 7, 17mulgdir 18908 . . . . . 6 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1914, 15, 16, 5, 18syl13anc 1372 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
20 isogrp 31910 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2120simprbi 497 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
22 omndtos 31913 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
23 tospos 18309 . . . . . . . . 9 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
2421, 22, 233syl 18 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Poset)
2512, 24syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Poset)
26 archiabllem1a.x . . . . . . . . 9 (𝜑𝑋𝐵)
2726ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋𝐵)
286, 7mulgcl 18893 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵) → (𝑚 · 𝑈) ∈ 𝐵)
2914, 16, 5, 28syl3anc 1371 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) ∈ 𝐵)
30 eqid 2736 . . . . . . . . 9 (-g𝑊) = (-g𝑊)
316, 30grpsubcl 18827 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3214, 27, 29, 31syl3anc 1371 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3316peano2zd 12610 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℤ)
346, 7mulgcl 18893 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑈𝐵) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
3514, 33, 5, 34syl3anc 1371 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
36 simprr 771 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 ((𝑚 + 1) · 𝑈))
37 archiabllem.e . . . . . . . . . 10 = (le‘𝑊)
386, 37, 30ogrpsub 31924 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ (𝑋𝐵 ∧ ((𝑚 + 1) · 𝑈) ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ 𝑋 ((𝑚 + 1) · 𝑈)) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
3912, 27, 35, 29, 36, 38syl131anc 1383 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
401nn0cnd 12475 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℂ)
41 1cnd 11150 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℂ)
4240, 41pncan2d 11514 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) − 𝑚) = 1)
4342oveq1d 7372 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (1 · 𝑈))
446, 7, 30mulgsubdir 18916 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4514, 33, 16, 5, 44syl13anc 1372 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4643, 45, 93eqtr3d 2784 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
4739, 46breqtrd 5131 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈)
48 archiabllem1.s . . . . . . . . . . 11 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
49483expia 1121 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ( 0 < 𝑥𝑈 𝑥))
5049ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
5150ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
52 archiabllem.0 . . . . . . . . . . 11 0 = (0g𝑊)
536, 52, 30grpsubid 18831 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
5414, 29, 53syl2anc 584 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
55 simprl 769 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) < 𝑋)
56 archiabllem.t . . . . . . . . . . 11 < = (lt‘𝑊)
576, 56, 30ogrpsublt 31929 . . . . . . . . . 10 ((𝑊 ∈ oGrp ∧ ((𝑚 · 𝑈) ∈ 𝐵𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ (𝑚 · 𝑈) < 𝑋) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5812, 29, 27, 29, 55, 57syl131anc 1383 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5954, 58eqbrtrrd 5129 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)))
60 breq2 5109 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → ( 0 < 𝑥0 < (𝑋(-g𝑊)(𝑚 · 𝑈))))
61 breq2 5109 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (𝑈 𝑥𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))))
6260, 61imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (( 0 < 𝑥𝑈 𝑥) ↔ ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6362rspcv 3577 . . . . . . . 8 ((𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵 → (∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥) → ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6432, 51, 59, 63syl3c 66 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))
656, 37posasymb 18208 . . . . . . . 8 ((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) → (((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))) ↔ (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈))
6665biimpa 477 . . . . . . 7 (((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) ∧ ((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6725, 32, 5, 47, 64, 66syl32anc 1378 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6867oveq1d 7372 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
6910, 19, 683eqtr4rd 2787 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = ((1 + 𝑚) · 𝑈))
706, 17, 30grpnpcan 18839 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7114, 27, 29, 70syl3anc 1371 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7241, 40addcomd 11357 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 + 𝑚) = (𝑚 + 1))
7372oveq1d 7372 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((𝑚 + 1) · 𝑈))
7469, 71, 733eqtr3d 2784 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 = ((𝑚 + 1) · 𝑈))
75 oveq1 7364 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑈) = ((𝑚 + 1) · 𝑈))
7675rspceeqv 3595 . . 3 (((𝑚 + 1) ∈ ℕ ∧ 𝑋 = ((𝑚 + 1) · 𝑈)) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
773, 74, 76syl2anc 584 . 2 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
78 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
79 archiabllem1.p . . 3 (𝜑0 < 𝑈)
80 archiabllem1a.c . . 3 (𝜑0 < 𝑋)
816, 52, 56, 37, 7, 11, 78, 4, 26, 79, 80archirng 32024 . 2 (𝜑 → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈)))
8277, 81r19.29a 3159 1 (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054  cmin 11385  cn 12153  0cn0 12413  cz 12499  Basecbs 17083  +gcplusg 17133  lecple 17140  0gc0g 17321  Posetcpo 18196  ltcplt 18197  Tosetctos 18305  Grpcgrp 18748  -gcsg 18750  .gcmg 18872  oMndcomnd 31905  oGrpcogrp 31906  Archicarchi 32013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-toset 18306  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-omnd 31907  df-ogrp 31908  df-inftm 32014  df-archi 32015
This theorem is referenced by:  archiabllem1b  32028
  Copyright terms: Public domain W3C validator