Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1a Structured version   Visualization version   GIF version

Theorem archiabllem1a 32912
Description: Lemma for archiabl 32919: In case an archimedean group 𝑊 admits a smallest positive element 𝑈, then any positive element 𝑋 of 𝑊 can be written as (𝑛 · 𝑈) with 𝑛 ∈ ℕ. Since the reciprocal holds for negative elements, 𝑊 is then isomorphic to . (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
archiabllem1a.x (𝜑𝑋𝐵)
archiabllem1a.c (𝜑0 < 𝑋)
Assertion
Ref Expression
archiabllem1a (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥   𝑛,𝑋,𝑥   𝜑,𝑛,𝑥   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hint:   (𝑛)

Proof of Theorem archiabllem1a
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℕ0)
2 nn0p1nn 12542 . . . 4 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℕ)
4 archiabllem1.u . . . . . . . 8 (𝜑𝑈𝐵)
54ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈𝐵)
6 archiabllem.b . . . . . . . 8 𝐵 = (Base‘𝑊)
7 archiabllem.m . . . . . . . 8 · = (.g𝑊)
86, 7mulg1 19036 . . . . . . 7 (𝑈𝐵 → (1 · 𝑈) = 𝑈)
95, 8syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 · 𝑈) = 𝑈)
109oveq1d 7435 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
11 archiabllem.g . . . . . . . 8 (𝜑𝑊 ∈ oGrp)
1211ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ oGrp)
13 ogrpgrp 32796 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
1412, 13syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Grp)
15 1zzd 12624 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℤ)
161nn0zd 12615 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℤ)
17 eqid 2728 . . . . . . 7 (+g𝑊) = (+g𝑊)
186, 7, 17mulgdir 19061 . . . . . 6 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1914, 15, 16, 5, 18syl13anc 1370 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
20 isogrp 32795 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2120simprbi 496 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
22 omndtos 32798 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
23 tospos 18412 . . . . . . . . 9 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
2421, 22, 233syl 18 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Poset)
2512, 24syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Poset)
26 archiabllem1a.x . . . . . . . . 9 (𝜑𝑋𝐵)
2726ad2antrr 725 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋𝐵)
286, 7mulgcl 19046 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵) → (𝑚 · 𝑈) ∈ 𝐵)
2914, 16, 5, 28syl3anc 1369 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) ∈ 𝐵)
30 eqid 2728 . . . . . . . . 9 (-g𝑊) = (-g𝑊)
316, 30grpsubcl 18976 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3214, 27, 29, 31syl3anc 1369 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3316peano2zd 12700 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℤ)
346, 7mulgcl 19046 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑈𝐵) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
3514, 33, 5, 34syl3anc 1369 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
36 simprr 772 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 ((𝑚 + 1) · 𝑈))
37 archiabllem.e . . . . . . . . . 10 = (le‘𝑊)
386, 37, 30ogrpsub 32809 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ (𝑋𝐵 ∧ ((𝑚 + 1) · 𝑈) ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ 𝑋 ((𝑚 + 1) · 𝑈)) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
3912, 27, 35, 29, 36, 38syl131anc 1381 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
401nn0cnd 12565 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℂ)
41 1cnd 11240 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℂ)
4240, 41pncan2d 11604 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) − 𝑚) = 1)
4342oveq1d 7435 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (1 · 𝑈))
446, 7, 30mulgsubdir 19069 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4514, 33, 16, 5, 44syl13anc 1370 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4643, 45, 93eqtr3d 2776 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
4739, 46breqtrd 5174 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈)
48 archiabllem1.s . . . . . . . . . . 11 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
49483expia 1119 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ( 0 < 𝑥𝑈 𝑥))
5049ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
5150ad2antrr 725 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
52 archiabllem.0 . . . . . . . . . . 11 0 = (0g𝑊)
536, 52, 30grpsubid 18980 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
5414, 29, 53syl2anc 583 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
55 simprl 770 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) < 𝑋)
56 archiabllem.t . . . . . . . . . . 11 < = (lt‘𝑊)
576, 56, 30ogrpsublt 32814 . . . . . . . . . 10 ((𝑊 ∈ oGrp ∧ ((𝑚 · 𝑈) ∈ 𝐵𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ (𝑚 · 𝑈) < 𝑋) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5812, 29, 27, 29, 55, 57syl131anc 1381 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5954, 58eqbrtrrd 5172 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)))
60 breq2 5152 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → ( 0 < 𝑥0 < (𝑋(-g𝑊)(𝑚 · 𝑈))))
61 breq2 5152 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (𝑈 𝑥𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))))
6260, 61imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (( 0 < 𝑥𝑈 𝑥) ↔ ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6362rspcv 3605 . . . . . . . 8 ((𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵 → (∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥) → ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6432, 51, 59, 63syl3c 66 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))
656, 37posasymb 18311 . . . . . . . 8 ((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) → (((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))) ↔ (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈))
6665biimpa 476 . . . . . . 7 (((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) ∧ ((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6725, 32, 5, 47, 64, 66syl32anc 1376 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6867oveq1d 7435 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
6910, 19, 683eqtr4rd 2779 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = ((1 + 𝑚) · 𝑈))
706, 17, 30grpnpcan 18988 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7114, 27, 29, 70syl3anc 1369 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7241, 40addcomd 11447 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 + 𝑚) = (𝑚 + 1))
7372oveq1d 7435 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((𝑚 + 1) · 𝑈))
7469, 71, 733eqtr3d 2776 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 = ((𝑚 + 1) · 𝑈))
75 oveq1 7427 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑈) = ((𝑚 + 1) · 𝑈))
7675rspceeqv 3631 . . 3 (((𝑚 + 1) ∈ ℕ ∧ 𝑋 = ((𝑚 + 1) · 𝑈)) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
773, 74, 76syl2anc 583 . 2 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
78 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
79 archiabllem1.p . . 3 (𝜑0 < 𝑈)
80 archiabllem1a.c . . 3 (𝜑0 < 𝑋)
816, 52, 56, 37, 7, 11, 78, 4, 26, 79, 80archirng 32909 . 2 (𝜑 → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈)))
8277, 81r19.29a 3159 1 (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  wrex 3067   class class class wbr 5148  cfv 6548  (class class class)co 7420  1c1 11140   + caddc 11142  cmin 11475  cn 12243  0cn0 12503  cz 12589  Basecbs 17180  +gcplusg 17233  lecple 17240  0gc0g 17421  Posetcpo 18299  ltcplt 18300  Tosetctos 18408  Grpcgrp 18890  -gcsg 18892  .gcmg 19023  oMndcomnd 32790  oGrpcogrp 32791  Archicarchi 32898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-seq 14000  df-0g 17423  df-proset 18287  df-poset 18305  df-plt 18322  df-toset 18409  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-minusg 18894  df-sbg 18895  df-mulg 19024  df-omnd 32792  df-ogrp 32793  df-inftm 32899  df-archi 32900
This theorem is referenced by:  archiabllem1b  32913
  Copyright terms: Public domain W3C validator