| Step | Hyp | Ref
| Expression |
| 1 | | simplr 768 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℕ0) |
| 2 | | nn0p1nn 12567 |
. . . 4
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℕ) |
| 4 | | archiabllem1.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 5 | 4 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑈 ∈ 𝐵) |
| 6 | | archiabllem.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑊) |
| 7 | | archiabllem.m |
. . . . . . . 8
⊢ · =
(.g‘𝑊) |
| 8 | 6, 7 | mulg1 19100 |
. . . . . . 7
⊢ (𝑈 ∈ 𝐵 → (1 · 𝑈) = 𝑈) |
| 9 | 5, 8 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (1 · 𝑈) = 𝑈) |
| 10 | 9 | oveq1d 7447 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((1 · 𝑈)(+g‘𝑊)(𝑚 · 𝑈)) = (𝑈(+g‘𝑊)(𝑚 · 𝑈))) |
| 11 | | archiabllem.g |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ oGrp) |
| 12 | 11 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ oGrp) |
| 13 | | ogrpgrp 33081 |
. . . . . . 7
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) |
| 14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Grp) |
| 15 | | 1zzd 12650 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 1 ∈
ℤ) |
| 16 | 1 | nn0zd 12641 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℤ) |
| 17 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 18 | 6, 7, 17 | mulgdir 19125 |
. . . . . 6
⊢ ((𝑊 ∈ Grp ∧ (1 ∈
ℤ ∧ 𝑚 ∈
ℤ ∧ 𝑈 ∈
𝐵)) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g‘𝑊)(𝑚 · 𝑈))) |
| 19 | 14, 15, 16, 5, 18 | syl13anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g‘𝑊)(𝑚 · 𝑈))) |
| 20 | | isogrp 33080 |
. . . . . . . . 9
⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) |
| 21 | 20 | simprbi 496 |
. . . . . . . 8
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
| 22 | | omndtos 33083 |
. . . . . . . 8
⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) |
| 23 | | tospos 18466 |
. . . . . . . 8
⊢ (𝑊 ∈ Toset → 𝑊 ∈ Poset) |
| 24 | 12, 21, 22, 23 | 4syl 19 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Poset) |
| 25 | | archiabllem1a.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 26 | 25 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑋 ∈ 𝐵) |
| 27 | 6, 7 | mulgcl 19110 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑈 ∈ 𝐵) → (𝑚 · 𝑈) ∈ 𝐵) |
| 28 | 14, 16, 5, 27 | syl3anc 1372 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) ∈ 𝐵) |
| 29 | | eqid 2736 |
. . . . . . . . 9
⊢
(-g‘𝑊) = (-g‘𝑊) |
| 30 | 6, 29 | grpsubcl 19039 |
. . . . . . . 8
⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → (𝑋(-g‘𝑊)(𝑚 · 𝑈)) ∈ 𝐵) |
| 31 | 14, 26, 28, 30 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (𝑋(-g‘𝑊)(𝑚 · 𝑈)) ∈ 𝐵) |
| 32 | 16 | peano2zd 12727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℤ) |
| 33 | 6, 7 | mulgcl 19110 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑈 ∈ 𝐵) → ((𝑚 + 1) · 𝑈) ∈ 𝐵) |
| 34 | 14, 32, 5, 33 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) · 𝑈) ∈ 𝐵) |
| 35 | | simprr 772 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑋 ≤ ((𝑚 + 1) · 𝑈)) |
| 36 | | archiabllem.e |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝑊) |
| 37 | 6, 36, 29 | ogrpsub 33094 |
. . . . . . . . 9
⊢ ((𝑊 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑈) ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈)) → (𝑋(-g‘𝑊)(𝑚 · 𝑈)) ≤ (((𝑚 + 1) · 𝑈)(-g‘𝑊)(𝑚 · 𝑈))) |
| 38 | 12, 26, 34, 28, 35, 37 | syl131anc 1384 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (𝑋(-g‘𝑊)(𝑚 · 𝑈)) ≤ (((𝑚 + 1) · 𝑈)(-g‘𝑊)(𝑚 · 𝑈))) |
| 39 | 1 | nn0cnd 12591 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℂ) |
| 40 | | 1cnd 11257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 1 ∈
ℂ) |
| 41 | 39, 40 | pncan2d 11623 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) − 𝑚) = 1) |
| 42 | 41 | oveq1d 7447 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (1 · 𝑈)) |
| 43 | 6, 7, 29 | mulgsubdir 19133 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ ((𝑚 + 1) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈 ∈ 𝐵)) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g‘𝑊)(𝑚 · 𝑈))) |
| 44 | 14, 32, 16, 5, 43 | syl13anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g‘𝑊)(𝑚 · 𝑈))) |
| 45 | 42, 44, 9 | 3eqtr3d 2784 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) · 𝑈)(-g‘𝑊)(𝑚 · 𝑈)) = 𝑈) |
| 46 | 38, 45 | breqtrd 5168 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (𝑋(-g‘𝑊)(𝑚 · 𝑈)) ≤ 𝑈) |
| 47 | | archiabllem1.s |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) |
| 48 | 47 | 3expia 1121 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 < 𝑥 → 𝑈 ≤ 𝑥)) |
| 49 | 48 | ralrimiva 3145 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 0 < 𝑥 → 𝑈 ≤ 𝑥)) |
| 50 | 49 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ∀𝑥 ∈ 𝐵 ( 0 < 𝑥 → 𝑈 ≤ 𝑥)) |
| 51 | | archiabllem.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑊) |
| 52 | 6, 51, 29 | grpsubid 19043 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑚 · 𝑈)(-g‘𝑊)(𝑚 · 𝑈)) = 0 ) |
| 53 | 14, 28, 52 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g‘𝑊)(𝑚 · 𝑈)) = 0 ) |
| 54 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) < 𝑋) |
| 55 | | archiabllem.t |
. . . . . . . . . . 11
⊢ < =
(lt‘𝑊) |
| 56 | 6, 55, 29 | ogrpsublt 33099 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ oGrp ∧ ((𝑚 · 𝑈) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ (𝑚 · 𝑈) < 𝑋) → ((𝑚 · 𝑈)(-g‘𝑊)(𝑚 · 𝑈)) < (𝑋(-g‘𝑊)(𝑚 · 𝑈))) |
| 57 | 12, 28, 26, 28, 54, 56 | syl131anc 1384 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g‘𝑊)(𝑚 · 𝑈)) < (𝑋(-g‘𝑊)(𝑚 · 𝑈))) |
| 58 | 53, 57 | eqbrtrrd 5166 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 0 < (𝑋(-g‘𝑊)(𝑚 · 𝑈))) |
| 59 | | breq2 5146 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑋(-g‘𝑊)(𝑚 · 𝑈)) → ( 0 < 𝑥 ↔ 0 < (𝑋(-g‘𝑊)(𝑚 · 𝑈)))) |
| 60 | | breq2 5146 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑋(-g‘𝑊)(𝑚 · 𝑈)) → (𝑈 ≤ 𝑥 ↔ 𝑈 ≤ (𝑋(-g‘𝑊)(𝑚 · 𝑈)))) |
| 61 | 59, 60 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑥 = (𝑋(-g‘𝑊)(𝑚 · 𝑈)) → (( 0 < 𝑥 → 𝑈 ≤ 𝑥) ↔ ( 0 < (𝑋(-g‘𝑊)(𝑚 · 𝑈)) → 𝑈 ≤ (𝑋(-g‘𝑊)(𝑚 · 𝑈))))) |
| 62 | 61 | rspcv 3617 |
. . . . . . . 8
⊢ ((𝑋(-g‘𝑊)(𝑚 · 𝑈)) ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ( 0 < 𝑥 → 𝑈 ≤ 𝑥) → ( 0 < (𝑋(-g‘𝑊)(𝑚 · 𝑈)) → 𝑈 ≤ (𝑋(-g‘𝑊)(𝑚 · 𝑈))))) |
| 63 | 31, 50, 58, 62 | syl3c 66 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑈 ≤ (𝑋(-g‘𝑊)(𝑚 · 𝑈))) |
| 64 | 6, 36 | posasymb 18366 |
. . . . . . . 8
⊢ ((𝑊 ∈ Poset ∧ (𝑋(-g‘𝑊)(𝑚 · 𝑈)) ∈ 𝐵 ∧ 𝑈 ∈ 𝐵) → (((𝑋(-g‘𝑊)(𝑚 · 𝑈)) ≤ 𝑈 ∧ 𝑈 ≤ (𝑋(-g‘𝑊)(𝑚 · 𝑈))) ↔ (𝑋(-g‘𝑊)(𝑚 · 𝑈)) = 𝑈)) |
| 65 | 64 | biimpa 476 |
. . . . . . 7
⊢ (((𝑊 ∈ Poset ∧ (𝑋(-g‘𝑊)(𝑚 · 𝑈)) ∈ 𝐵 ∧ 𝑈 ∈ 𝐵) ∧ ((𝑋(-g‘𝑊)(𝑚 · 𝑈)) ≤ 𝑈 ∧ 𝑈 ≤ (𝑋(-g‘𝑊)(𝑚 · 𝑈)))) → (𝑋(-g‘𝑊)(𝑚 · 𝑈)) = 𝑈) |
| 66 | 24, 31, 5, 46, 63, 65 | syl32anc 1379 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (𝑋(-g‘𝑊)(𝑚 · 𝑈)) = 𝑈) |
| 67 | 66 | oveq1d 7447 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((𝑋(-g‘𝑊)(𝑚 · 𝑈))(+g‘𝑊)(𝑚 · 𝑈)) = (𝑈(+g‘𝑊)(𝑚 · 𝑈))) |
| 68 | 10, 19, 67 | 3eqtr4rd 2787 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((𝑋(-g‘𝑊)(𝑚 · 𝑈))(+g‘𝑊)(𝑚 · 𝑈)) = ((1 + 𝑚) · 𝑈)) |
| 69 | 6, 17, 29 | grpnpcan 19051 |
. . . . 5
⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑋(-g‘𝑊)(𝑚 · 𝑈))(+g‘𝑊)(𝑚 · 𝑈)) = 𝑋) |
| 70 | 14, 26, 28, 69 | syl3anc 1372 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((𝑋(-g‘𝑊)(𝑚 · 𝑈))(+g‘𝑊)(𝑚 · 𝑈)) = 𝑋) |
| 71 | 40, 39 | addcomd 11464 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → (1 + 𝑚) = (𝑚 + 1)) |
| 72 | 71 | oveq1d 7447 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((𝑚 + 1) · 𝑈)) |
| 73 | 68, 70, 72 | 3eqtr3d 2784 |
. . 3
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → 𝑋 = ((𝑚 + 1) · 𝑈)) |
| 74 | | oveq1 7439 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → (𝑛 · 𝑈) = ((𝑚 + 1) · 𝑈)) |
| 75 | 74 | rspceeqv 3644 |
. . 3
⊢ (((𝑚 + 1) ∈ ℕ ∧ 𝑋 = ((𝑚 + 1) · 𝑈)) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈)) |
| 76 | 3, 73, 75 | syl2anc 584 |
. 2
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈)) |
| 77 | | archiabllem.a |
. . 3
⊢ (𝜑 → 𝑊 ∈ Archi) |
| 78 | | archiabllem1.p |
. . 3
⊢ (𝜑 → 0 < 𝑈) |
| 79 | | archiabllem1a.c |
. . 3
⊢ (𝜑 → 0 < 𝑋) |
| 80 | 6, 51, 55, 36, 7, 11, 77, 4, 25, 78, 79 | archirng 33196 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑈) < 𝑋 ∧ 𝑋 ≤ ((𝑚 + 1) · 𝑈))) |
| 81 | 76, 80 | r19.29a 3161 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈)) |