Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltrbid Structured version   Visualization version   GIF version

Theorem ogrpaddltrbid 33088
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
ogrpaddltrd.1 (𝜑𝐺𝑉)
ogrpaddltrd.2 (𝜑 → (oppg𝐺) ∈ oGrp)
ogrpaddltrd.3 (𝜑𝑋𝐵)
ogrpaddltrd.4 (𝜑𝑌𝐵)
ogrpaddltrd.5 (𝜑𝑍𝐵)
Assertion
Ref Expression
ogrpaddltrbid (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))

Proof of Theorem ogrpaddltrbid
StepHypRef Expression
1 ogrpaddlt.0 . . 3 𝐵 = (Base‘𝐺)
2 ogrpaddlt.1 . . 3 < = (lt‘𝐺)
3 ogrpaddlt.2 . . 3 + = (+g𝐺)
4 ogrpaddltrd.1 . . . 4 (𝜑𝐺𝑉)
54adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → 𝐺𝑉)
6 ogrpaddltrd.2 . . . 4 (𝜑 → (oppg𝐺) ∈ oGrp)
76adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → (oppg𝐺) ∈ oGrp)
8 ogrpaddltrd.3 . . . 4 (𝜑𝑋𝐵)
98adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋𝐵)
10 ogrpaddltrd.4 . . . 4 (𝜑𝑌𝐵)
1110adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → 𝑌𝐵)
12 ogrpaddltrd.5 . . . 4 (𝜑𝑍𝐵)
1312adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → 𝑍𝐵)
14 simpr 484 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
151, 2, 3, 5, 7, 9, 11, 13, 14ogrpaddltrd 33087 . 2 ((𝜑𝑋 < 𝑌) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
164adantr 480 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺𝑉)
176adantr 480 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ oGrp)
18 ogrpgrp 33071 . . . . . . 7 ((oppg𝐺) ∈ oGrp → (oppg𝐺) ∈ Grp)
196, 18syl 17 . . . . . 6 (𝜑 → (oppg𝐺) ∈ Grp)
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ Grp)
218adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋𝐵)
2212adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑍𝐵)
23 eqid 2735 . . . . . . 7 (oppg𝐺) = (oppg𝐺)
24 eqid 2735 . . . . . . 7 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
253, 23, 24oppgplus 19332 . . . . . 6 (𝑋(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑋)
2623, 1oppgbas 19334 . . . . . . 7 𝐵 = (Base‘(oppg𝐺))
2726, 24grpcl 18924 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
2825, 27eqeltrrid 2839 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑍 + 𝑋) ∈ 𝐵)
2920, 21, 22, 28syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) ∈ 𝐵)
3010adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑌𝐵)
313, 23, 24oppgplus 19332 . . . . . 6 (𝑌(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑌)
3226, 24grpcl 18924 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
3331, 32eqeltrrid 2839 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
3420, 30, 22, 33syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑌) ∈ 𝐵)
3523oppggrpb 19341 . . . . . 6 (𝐺 ∈ Grp ↔ (oppg𝐺) ∈ Grp)
3620, 35sylibr 234 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺 ∈ Grp)
37 eqid 2735 . . . . . 6 (invg𝐺) = (invg𝐺)
381, 37grpinvcl 18970 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
3936, 22, 38syl2anc 584 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
40 simpr 484 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
411, 2, 3, 16, 17, 29, 34, 39, 40ogrpaddltrd 33087 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) < (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
42 eqid 2735 . . . . . . 7 (0g𝐺) = (0g𝐺)
431, 3, 42, 37grplinv 18972 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4436, 22, 43syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4544oveq1d 7420 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
461, 3grpass 18925 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
4736, 39, 22, 21, 46syl13anc 1374 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
481, 3, 42grplid 18950 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
4936, 21, 48syl2anc 584 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑋) = 𝑋)
5045, 47, 493eqtr3d 2778 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
5144oveq1d 7420 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
521, 3grpass 18925 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
5336, 39, 22, 30, 52syl13anc 1374 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
541, 3, 42grplid 18950 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
5536, 30, 54syl2anc 584 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑌) = 𝑌)
5651, 53, 553eqtr3d 2778 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
5741, 50, 563brtr3d 5150 . 2 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋 < 𝑌)
5815, 57impbida 800 1 (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  ltcplt 18320  Grpcgrp 18916  invgcminusg 18917  oppgcoppg 19328  oGrpcogrp 33066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-dec 12709  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-ple 17291  df-0g 17455  df-plt 18340  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-oppg 19329  df-omnd 33067  df-ogrp 33068
This theorem is referenced by:  ogrpinvlt  33091
  Copyright terms: Public domain W3C validator