Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltrbid Structured version   Visualization version   GIF version

Theorem ogrpaddltrbid 32840
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
ogrpaddltrd.1 (𝜑𝐺𝑉)
ogrpaddltrd.2 (𝜑 → (oppg𝐺) ∈ oGrp)
ogrpaddltrd.3 (𝜑𝑋𝐵)
ogrpaddltrd.4 (𝜑𝑌𝐵)
ogrpaddltrd.5 (𝜑𝑍𝐵)
Assertion
Ref Expression
ogrpaddltrbid (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))

Proof of Theorem ogrpaddltrbid
StepHypRef Expression
1 ogrpaddlt.0 . . 3 𝐵 = (Base‘𝐺)
2 ogrpaddlt.1 . . 3 < = (lt‘𝐺)
3 ogrpaddlt.2 . . 3 + = (+g𝐺)
4 ogrpaddltrd.1 . . . 4 (𝜑𝐺𝑉)
54adantr 479 . . 3 ((𝜑𝑋 < 𝑌) → 𝐺𝑉)
6 ogrpaddltrd.2 . . . 4 (𝜑 → (oppg𝐺) ∈ oGrp)
76adantr 479 . . 3 ((𝜑𝑋 < 𝑌) → (oppg𝐺) ∈ oGrp)
8 ogrpaddltrd.3 . . . 4 (𝜑𝑋𝐵)
98adantr 479 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋𝐵)
10 ogrpaddltrd.4 . . . 4 (𝜑𝑌𝐵)
1110adantr 479 . . 3 ((𝜑𝑋 < 𝑌) → 𝑌𝐵)
12 ogrpaddltrd.5 . . . 4 (𝜑𝑍𝐵)
1312adantr 479 . . 3 ((𝜑𝑋 < 𝑌) → 𝑍𝐵)
14 simpr 483 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
151, 2, 3, 5, 7, 9, 11, 13, 14ogrpaddltrd 32839 . 2 ((𝜑𝑋 < 𝑌) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
164adantr 479 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺𝑉)
176adantr 479 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ oGrp)
18 ogrpgrp 32823 . . . . . . 7 ((oppg𝐺) ∈ oGrp → (oppg𝐺) ∈ Grp)
196, 18syl 17 . . . . . 6 (𝜑 → (oppg𝐺) ∈ Grp)
2019adantr 479 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ Grp)
218adantr 479 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋𝐵)
2212adantr 479 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑍𝐵)
23 eqid 2725 . . . . . . 7 (oppg𝐺) = (oppg𝐺)
24 eqid 2725 . . . . . . 7 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
253, 23, 24oppgplus 19299 . . . . . 6 (𝑋(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑋)
2623, 1oppgbas 19302 . . . . . . 7 𝐵 = (Base‘(oppg𝐺))
2726, 24grpcl 18897 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
2825, 27eqeltrrid 2830 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑍 + 𝑋) ∈ 𝐵)
2920, 21, 22, 28syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) ∈ 𝐵)
3010adantr 479 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑌𝐵)
313, 23, 24oppgplus 19299 . . . . . 6 (𝑌(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑌)
3226, 24grpcl 18897 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
3331, 32eqeltrrid 2830 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
3420, 30, 22, 33syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑌) ∈ 𝐵)
3523oppggrpb 19311 . . . . . 6 (𝐺 ∈ Grp ↔ (oppg𝐺) ∈ Grp)
3620, 35sylibr 233 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺 ∈ Grp)
37 eqid 2725 . . . . . 6 (invg𝐺) = (invg𝐺)
381, 37grpinvcl 18943 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
3936, 22, 38syl2anc 582 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
40 simpr 483 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
411, 2, 3, 16, 17, 29, 34, 39, 40ogrpaddltrd 32839 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) < (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
42 eqid 2725 . . . . . . 7 (0g𝐺) = (0g𝐺)
431, 3, 42, 37grplinv 18945 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4436, 22, 43syl2anc 582 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4544oveq1d 7428 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
461, 3grpass 18898 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
4736, 39, 22, 21, 46syl13anc 1369 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
481, 3, 42grplid 18923 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
4936, 21, 48syl2anc 582 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑋) = 𝑋)
5045, 47, 493eqtr3d 2773 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
5144oveq1d 7428 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
521, 3grpass 18898 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
5336, 39, 22, 30, 52syl13anc 1369 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
541, 3, 42grplid 18923 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
5536, 30, 54syl2anc 582 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑌) = 𝑌)
5651, 53, 553eqtr3d 2773 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
5741, 50, 563brtr3d 5175 . 2 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋 < 𝑌)
5815, 57impbida 799 1 (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5144  cfv 6543  (class class class)co 7413  Basecbs 17174  +gcplusg 17227  0gc0g 17415  ltcplt 18294  Grpcgrp 18889  invgcminusg 18890  oppgcoppg 19295  oGrpcogrp 32818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-dec 12703  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-plusg 17240  df-ple 17247  df-0g 17417  df-plt 18316  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-grp 18892  df-minusg 18893  df-oppg 19296  df-omnd 32819  df-ogrp 32820
This theorem is referenced by:  ogrpinvlt  32843
  Copyright terms: Public domain W3C validator