Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltrbid Structured version   Visualization version   GIF version

Theorem ogrpaddltrbid 31248
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
ogrpaddltrd.1 (𝜑𝐺𝑉)
ogrpaddltrd.2 (𝜑 → (oppg𝐺) ∈ oGrp)
ogrpaddltrd.3 (𝜑𝑋𝐵)
ogrpaddltrd.4 (𝜑𝑌𝐵)
ogrpaddltrd.5 (𝜑𝑍𝐵)
Assertion
Ref Expression
ogrpaddltrbid (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))

Proof of Theorem ogrpaddltrbid
StepHypRef Expression
1 ogrpaddlt.0 . . 3 𝐵 = (Base‘𝐺)
2 ogrpaddlt.1 . . 3 < = (lt‘𝐺)
3 ogrpaddlt.2 . . 3 + = (+g𝐺)
4 ogrpaddltrd.1 . . . 4 (𝜑𝐺𝑉)
54adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → 𝐺𝑉)
6 ogrpaddltrd.2 . . . 4 (𝜑 → (oppg𝐺) ∈ oGrp)
76adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → (oppg𝐺) ∈ oGrp)
8 ogrpaddltrd.3 . . . 4 (𝜑𝑋𝐵)
98adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋𝐵)
10 ogrpaddltrd.4 . . . 4 (𝜑𝑌𝐵)
1110adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → 𝑌𝐵)
12 ogrpaddltrd.5 . . . 4 (𝜑𝑍𝐵)
1312adantr 480 . . 3 ((𝜑𝑋 < 𝑌) → 𝑍𝐵)
14 simpr 484 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
151, 2, 3, 5, 7, 9, 11, 13, 14ogrpaddltrd 31247 . 2 ((𝜑𝑋 < 𝑌) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
164adantr 480 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺𝑉)
176adantr 480 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ oGrp)
18 ogrpgrp 31231 . . . . . . 7 ((oppg𝐺) ∈ oGrp → (oppg𝐺) ∈ Grp)
196, 18syl 17 . . . . . 6 (𝜑 → (oppg𝐺) ∈ Grp)
2019adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ Grp)
218adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋𝐵)
2212adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑍𝐵)
23 eqid 2738 . . . . . . 7 (oppg𝐺) = (oppg𝐺)
24 eqid 2738 . . . . . . 7 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
253, 23, 24oppgplus 18868 . . . . . 6 (𝑋(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑋)
2623, 1oppgbas 18871 . . . . . . 7 𝐵 = (Base‘(oppg𝐺))
2726, 24grpcl 18500 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
2825, 27eqeltrrid 2844 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑍 + 𝑋) ∈ 𝐵)
2920, 21, 22, 28syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) ∈ 𝐵)
3010adantr 480 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑌𝐵)
313, 23, 24oppgplus 18868 . . . . . 6 (𝑌(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑌)
3226, 24grpcl 18500 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
3331, 32eqeltrrid 2844 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
3420, 30, 22, 33syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑌) ∈ 𝐵)
3523oppggrpb 18880 . . . . . 6 (𝐺 ∈ Grp ↔ (oppg𝐺) ∈ Grp)
3620, 35sylibr 233 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺 ∈ Grp)
37 eqid 2738 . . . . . 6 (invg𝐺) = (invg𝐺)
381, 37grpinvcl 18542 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
3936, 22, 38syl2anc 583 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
40 simpr 484 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
411, 2, 3, 16, 17, 29, 34, 39, 40ogrpaddltrd 31247 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) < (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
42 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
431, 3, 42, 37grplinv 18543 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4436, 22, 43syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4544oveq1d 7270 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
461, 3grpass 18501 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
4736, 39, 22, 21, 46syl13anc 1370 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
481, 3, 42grplid 18524 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
4936, 21, 48syl2anc 583 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑋) = 𝑋)
5045, 47, 493eqtr3d 2786 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
5144oveq1d 7270 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
521, 3grpass 18501 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
5336, 39, 22, 30, 52syl13anc 1370 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
541, 3, 42grplid 18524 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
5536, 30, 54syl2anc 583 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑌) = 𝑌)
5651, 53, 553eqtr3d 2786 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
5741, 50, 563brtr3d 5101 . 2 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋 < 𝑌)
5815, 57impbida 797 1 (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  ltcplt 17941  Grpcgrp 18492  invgcminusg 18493  oppgcoppg 18864  oGrpcogrp 31226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-ple 16908  df-0g 17069  df-plt 17963  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-oppg 18865  df-omnd 31227  df-ogrp 31228
This theorem is referenced by:  ogrpinvlt  31251
  Copyright terms: Public domain W3C validator