Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltrbid Structured version   Visualization version   GIF version

Theorem ogrpaddltrbid 30885
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0 𝐵 = (Base‘𝐺)
ogrpaddlt.1 < = (lt‘𝐺)
ogrpaddlt.2 + = (+g𝐺)
ogrpaddltrd.1 (𝜑𝐺𝑉)
ogrpaddltrd.2 (𝜑 → (oppg𝐺) ∈ oGrp)
ogrpaddltrd.3 (𝜑𝑋𝐵)
ogrpaddltrd.4 (𝜑𝑌𝐵)
ogrpaddltrd.5 (𝜑𝑍𝐵)
Assertion
Ref Expression
ogrpaddltrbid (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))

Proof of Theorem ogrpaddltrbid
StepHypRef Expression
1 ogrpaddlt.0 . . 3 𝐵 = (Base‘𝐺)
2 ogrpaddlt.1 . . 3 < = (lt‘𝐺)
3 ogrpaddlt.2 . . 3 + = (+g𝐺)
4 ogrpaddltrd.1 . . . 4 (𝜑𝐺𝑉)
54adantr 484 . . 3 ((𝜑𝑋 < 𝑌) → 𝐺𝑉)
6 ogrpaddltrd.2 . . . 4 (𝜑 → (oppg𝐺) ∈ oGrp)
76adantr 484 . . 3 ((𝜑𝑋 < 𝑌) → (oppg𝐺) ∈ oGrp)
8 ogrpaddltrd.3 . . . 4 (𝜑𝑋𝐵)
98adantr 484 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋𝐵)
10 ogrpaddltrd.4 . . . 4 (𝜑𝑌𝐵)
1110adantr 484 . . 3 ((𝜑𝑋 < 𝑌) → 𝑌𝐵)
12 ogrpaddltrd.5 . . . 4 (𝜑𝑍𝐵)
1312adantr 484 . . 3 ((𝜑𝑋 < 𝑌) → 𝑍𝐵)
14 simpr 488 . . 3 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
151, 2, 3, 5, 7, 9, 11, 13, 14ogrpaddltrd 30884 . 2 ((𝜑𝑋 < 𝑌) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
164adantr 484 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺𝑉)
176adantr 484 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ oGrp)
18 ogrpgrp 30868 . . . . . . 7 ((oppg𝐺) ∈ oGrp → (oppg𝐺) ∈ Grp)
196, 18syl 17 . . . . . 6 (𝜑 → (oppg𝐺) ∈ Grp)
2019adantr 484 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (oppg𝐺) ∈ Grp)
218adantr 484 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋𝐵)
2212adantr 484 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑍𝐵)
23 eqid 2758 . . . . . . 7 (oppg𝐺) = (oppg𝐺)
24 eqid 2758 . . . . . . 7 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
253, 23, 24oppgplus 18558 . . . . . 6 (𝑋(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑋)
2623, 1oppgbas 18560 . . . . . . 7 𝐵 = (Base‘(oppg𝐺))
2726, 24grpcl 18191 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
2825, 27eqeltrrid 2857 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑍 + 𝑋) ∈ 𝐵)
2920, 21, 22, 28syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) ∈ 𝐵)
3010adantr 484 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑌𝐵)
313, 23, 24oppgplus 18558 . . . . . 6 (𝑌(+g‘(oppg𝐺))𝑍) = (𝑍 + 𝑌)
3226, 24grpcl 18191 . . . . . 6 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌(+g‘(oppg𝐺))𝑍) ∈ 𝐵)
3331, 32eqeltrrid 2857 . . . . 5 (((oppg𝐺) ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑍 + 𝑌) ∈ 𝐵)
3420, 30, 22, 33syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑌) ∈ 𝐵)
3523oppggrpb 18567 . . . . . 6 (𝐺 ∈ Grp ↔ (oppg𝐺) ∈ Grp)
3620, 35sylibr 237 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝐺 ∈ Grp)
37 eqid 2758 . . . . . 6 (invg𝐺) = (invg𝐺)
381, 37grpinvcl 18232 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
3936, 22, 38syl2anc 587 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
40 simpr 488 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (𝑍 + 𝑋) < (𝑍 + 𝑌))
411, 2, 3, 16, 17, 29, 34, 39, 40ogrpaddltrd 30884 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) < (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
42 eqid 2758 . . . . . . 7 (0g𝐺) = (0g𝐺)
431, 3, 42, 37grplinv 18233 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4436, 22, 43syl2anc 587 . . . . 5 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
4544oveq1d 7171 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
461, 3grpass 18192 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
4736, 39, 22, 21, 46syl13anc 1369 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
481, 3, 42grplid 18214 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
4936, 21, 48syl2anc 587 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑋) = 𝑋)
5045, 47, 493eqtr3d 2801 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
5144oveq1d 7171 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
521, 3grpass 18192 . . . . 5 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
5336, 39, 22, 30, 52syl13anc 1369 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
541, 3, 42grplid 18214 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
5536, 30, 54syl2anc 587 . . . 4 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → ((0g𝐺) + 𝑌) = 𝑌)
5651, 53, 553eqtr3d 2801 . . 3 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
5741, 50, 563brtr3d 5067 . 2 ((𝜑 ∧ (𝑍 + 𝑋) < (𝑍 + 𝑌)) → 𝑋 < 𝑌)
5815, 57impbida 800 1 (𝜑 → (𝑋 < 𝑌 ↔ (𝑍 + 𝑋) < (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5036  cfv 6340  (class class class)co 7156  Basecbs 16555  +gcplusg 16637  0gc0g 16785  ltcplt 17631  Grpcgrp 18183  invgcminusg 18184  oppgcoppg 18554  oGrpcogrp 30863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-dec 12151  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-plusg 16650  df-ple 16657  df-0g 16787  df-plt 17648  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-grp 18186  df-minusg 18187  df-oppg 18555  df-omnd 30864  df-ogrp 30865
This theorem is referenced by:  ogrpinvlt  30888
  Copyright terms: Public domain W3C validator