Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpsub Structured version   Visualization version   GIF version

Theorem ogrpsub 33094
Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
ogrpsub.0 𝐵 = (Base‘𝐺)
ogrpsub.1 = (le‘𝐺)
ogrpsub.2 = (-g𝐺)
Assertion
Ref Expression
ogrpsub ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) (𝑌 𝑍))

Proof of Theorem ogrpsub
StepHypRef Expression
1 isogrp 33080 . . . . 5 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 496 . . . 4 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
323ad2ant1 1133 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝐺 ∈ oMnd)
4 simp21 1206 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
5 simp22 1207 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
6 ogrpgrp 33081 . . . . 5 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
763ad2ant1 1133 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝐺 ∈ Grp)
8 simp23 1208 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑍𝐵)
9 ogrpsub.0 . . . . 5 𝐵 = (Base‘𝐺)
10 eqid 2736 . . . . 5 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 19006 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
127, 8, 11syl2anc 584 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → ((invg𝐺)‘𝑍) ∈ 𝐵)
13 simp3 1138 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑋 𝑌)
14 ogrpsub.1 . . . 4 = (le‘𝐺)
15 eqid 2736 . . . 4 (+g𝐺) = (+g𝐺)
169, 14, 15omndadd 33084 . . 3 ((𝐺 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 𝑌) → (𝑋(+g𝐺)((invg𝐺)‘𝑍)) (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
173, 4, 5, 12, 13, 16syl131anc 1384 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋(+g𝐺)((invg𝐺)‘𝑍)) (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
18 ogrpsub.2 . . . 4 = (-g𝐺)
199, 15, 10, 18grpsubval 19004 . . 3 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
204, 8, 19syl2anc 584 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
219, 15, 10, 18grpsubval 19004 . . 3 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
225, 8, 21syl2anc 584 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
2317, 20, 223brtr4d 5174 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  lecple 17305  Grpcgrp 18952  invgcminusg 18953  -gcsg 18954  oMndcomnd 33075  oGrpcogrp 33076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-sbg 18957  df-omnd 33077  df-ogrp 33078
This theorem is referenced by:  ogrpsublt  33099  archiabllem1a  33199  archiabllem2c  33203  ornglmulle  33336  orngrmulle  33337
  Copyright terms: Public domain W3C validator