| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpsub | Structured version Visualization version GIF version | ||
| Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| ogrpsub.0 | ⊢ 𝐵 = (Base‘𝐺) |
| ogrpsub.1 | ⊢ ≤ = (le‘𝐺) |
| ogrpsub.2 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| ogrpsub | ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 33080 | . . . . 5 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ oMnd) |
| 4 | simp21 1206 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) | |
| 5 | simp22 1207 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) | |
| 6 | ogrpgrp 33081 | . . . . 5 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) | |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ Grp) |
| 8 | simp23 1208 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑍 ∈ 𝐵) | |
| 9 | ogrpsub.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | eqid 2736 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 11 | 9, 10 | grpinvcl 19006 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 12 | 7, 8, 11 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 13 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) | |
| 14 | ogrpsub.1 | . . . 4 ⊢ ≤ = (le‘𝐺) | |
| 15 | eqid 2736 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 9, 14, 15 | omndadd 33084 | . . 3 ⊢ ((𝐺 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 17 | 3, 4, 5, 12, 13, 16 | syl131anc 1384 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 18 | ogrpsub.2 | . . . 4 ⊢ − = (-g‘𝐺) | |
| 19 | 9, 15, 10, 18 | grpsubval 19004 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 20 | 4, 8, 19 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 21 | 9, 15, 10, 18 | grpsubval 19004 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 22 | 5, 8, 21 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 23 | 17, 20, 22 | 3brtr4d 5174 | 1 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 lecple 17305 Grpcgrp 18952 invgcminusg 18953 -gcsg 18954 oMndcomnd 33075 oGrpcogrp 33076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-omnd 33077 df-ogrp 33078 |
| This theorem is referenced by: ogrpsublt 33099 archiabllem1a 33199 archiabllem2c 33203 ornglmulle 33336 orngrmulle 33337 |
| Copyright terms: Public domain | W3C validator |