| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpsub | Structured version Visualization version GIF version | ||
| Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| ogrpsub.0 | ⊢ 𝐵 = (Base‘𝐺) |
| ogrpsub.1 | ⊢ ≤ = (le‘𝐺) |
| ogrpsub.2 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| ogrpsub | ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 33016 | . . . . 5 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ oMnd) |
| 4 | simp21 1207 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) | |
| 5 | simp22 1208 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) | |
| 6 | ogrpgrp 33017 | . . . . 5 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) | |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ Grp) |
| 8 | simp23 1209 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑍 ∈ 𝐵) | |
| 9 | ogrpsub.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 11 | 9, 10 | grpinvcl 18919 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 12 | 7, 8, 11 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 13 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) | |
| 14 | ogrpsub.1 | . . . 4 ⊢ ≤ = (le‘𝐺) | |
| 15 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 9, 14, 15 | omndadd 33020 | . . 3 ⊢ ((𝐺 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 17 | 3, 4, 5, 12, 13, 16 | syl131anc 1385 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 18 | ogrpsub.2 | . . . 4 ⊢ − = (-g‘𝐺) | |
| 19 | 9, 15, 10, 18 | grpsubval 18917 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 20 | 4, 8, 19 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 21 | 9, 15, 10, 18 | grpsubval 18917 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 22 | 5, 8, 21 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 23 | 17, 20, 22 | 3brtr4d 5139 | 1 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 lecple 17227 Grpcgrp 18865 invgcminusg 18866 -gcsg 18867 oMndcomnd 33011 oGrpcogrp 33012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-omnd 33013 df-ogrp 33014 |
| This theorem is referenced by: ogrpsublt 33035 archiabllem1a 33145 archiabllem2c 33149 ornglmulle 33283 orngrmulle 33284 |
| Copyright terms: Public domain | W3C validator |