MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ogrpsub Structured version   Visualization version   GIF version

Theorem ogrpsub 20049
Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
ogrpsub.0 𝐵 = (Base‘𝐺)
ogrpsub.1 = (le‘𝐺)
ogrpsub.2 = (-g𝐺)
Assertion
Ref Expression
ogrpsub ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) (𝑌 𝑍))

Proof of Theorem ogrpsub
StepHypRef Expression
1 isogrp 20036 . . . . 5 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 496 . . . 4 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
323ad2ant1 1133 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝐺 ∈ oMnd)
4 simp21 1207 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
5 simp22 1208 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
6 ogrpgrp 20037 . . . . 5 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
763ad2ant1 1133 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝐺 ∈ Grp)
8 simp23 1209 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑍𝐵)
9 ogrpsub.0 . . . . 5 𝐵 = (Base‘𝐺)
10 eqid 2731 . . . . 5 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 18900 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
127, 8, 11syl2anc 584 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → ((invg𝐺)‘𝑍) ∈ 𝐵)
13 simp3 1138 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑋 𝑌)
14 ogrpsub.1 . . . 4 = (le‘𝐺)
15 eqid 2731 . . . 4 (+g𝐺) = (+g𝐺)
169, 14, 15omndadd 20040 . . 3 ((𝐺 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 𝑌) → (𝑋(+g𝐺)((invg𝐺)‘𝑍)) (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
173, 4, 5, 12, 13, 16syl131anc 1385 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋(+g𝐺)((invg𝐺)‘𝑍)) (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
18 ogrpsub.2 . . . 4 = (-g𝐺)
199, 15, 10, 18grpsubval 18898 . . 3 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
204, 8, 19syl2anc 584 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
219, 15, 10, 18grpsubval 18898 . . 3 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
225, 8, 21syl2anc 584 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
2317, 20, 223brtr4d 5121 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  lecple 17168  Grpcgrp 18846  invgcminusg 18847  -gcsg 18848  oMndcomnd 20031  oGrpcogrp 20032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-omnd 20033  df-ogrp 20034
This theorem is referenced by:  ogrpsublt  20054  ornglmulle  20782  orngrmulle  20783  archiabllem1a  33160  archiabllem2c  33164
  Copyright terms: Public domain W3C validator