Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpsub Structured version   Visualization version   GIF version

Theorem ogrpsub 33089
Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
ogrpsub.0 𝐵 = (Base‘𝐺)
ogrpsub.1 = (le‘𝐺)
ogrpsub.2 = (-g𝐺)
Assertion
Ref Expression
ogrpsub ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) (𝑌 𝑍))

Proof of Theorem ogrpsub
StepHypRef Expression
1 isogrp 33075 . . . . 5 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 496 . . . 4 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
323ad2ant1 1133 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝐺 ∈ oMnd)
4 simp21 1207 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
5 simp22 1208 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
6 ogrpgrp 33076 . . . . 5 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
763ad2ant1 1133 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝐺 ∈ Grp)
8 simp23 1209 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑍𝐵)
9 ogrpsub.0 . . . . 5 𝐵 = (Base‘𝐺)
10 eqid 2736 . . . . 5 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 18975 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
127, 8, 11syl2anc 584 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → ((invg𝐺)‘𝑍) ∈ 𝐵)
13 simp3 1138 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑋 𝑌)
14 ogrpsub.1 . . . 4 = (le‘𝐺)
15 eqid 2736 . . . 4 (+g𝐺) = (+g𝐺)
169, 14, 15omndadd 33079 . . 3 ((𝐺 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 𝑌) → (𝑋(+g𝐺)((invg𝐺)‘𝑍)) (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
173, 4, 5, 12, 13, 16syl131anc 1385 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋(+g𝐺)((invg𝐺)‘𝑍)) (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
18 ogrpsub.2 . . . 4 = (-g𝐺)
199, 15, 10, 18grpsubval 18973 . . 3 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
204, 8, 19syl2anc 584 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
219, 15, 10, 18grpsubval 18973 . . 3 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
225, 8, 21syl2anc 584 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
2317, 20, 223brtr4d 5156 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  lecple 17283  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923  oMndcomnd 33070  oGrpcogrp 33071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-omnd 33072  df-ogrp 33073
This theorem is referenced by:  ogrpsublt  33094  archiabllem1a  33194  archiabllem2c  33198  ornglmulle  33332  orngrmulle  33333
  Copyright terms: Public domain W3C validator