Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpsub Structured version   Visualization version   GIF version

Theorem ogrpsub 33030
Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
ogrpsub.0 𝐵 = (Base‘𝐺)
ogrpsub.1 = (le‘𝐺)
ogrpsub.2 = (-g𝐺)
Assertion
Ref Expression
ogrpsub ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) (𝑌 𝑍))

Proof of Theorem ogrpsub
StepHypRef Expression
1 isogrp 33016 . . . . 5 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 496 . . . 4 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
323ad2ant1 1133 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝐺 ∈ oMnd)
4 simp21 1207 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
5 simp22 1208 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
6 ogrpgrp 33017 . . . . 5 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
763ad2ant1 1133 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝐺 ∈ Grp)
8 simp23 1209 . . . 4 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑍𝐵)
9 ogrpsub.0 . . . . 5 𝐵 = (Base‘𝐺)
10 eqid 2729 . . . . 5 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 18919 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
127, 8, 11syl2anc 584 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → ((invg𝐺)‘𝑍) ∈ 𝐵)
13 simp3 1138 . . 3 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → 𝑋 𝑌)
14 ogrpsub.1 . . . 4 = (le‘𝐺)
15 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
169, 14, 15omndadd 33020 . . 3 ((𝐺 ∈ oMnd ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 𝑌) → (𝑋(+g𝐺)((invg𝐺)‘𝑍)) (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
173, 4, 5, 12, 13, 16syl131anc 1385 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋(+g𝐺)((invg𝐺)‘𝑍)) (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
18 ogrpsub.2 . . . 4 = (-g𝐺)
199, 15, 10, 18grpsubval 18917 . . 3 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
204, 8, 19syl2anc 584 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) = (𝑋(+g𝐺)((invg𝐺)‘𝑍)))
219, 15, 10, 18grpsubval 18917 . . 3 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
225, 8, 21syl2anc 584 . 2 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑌 𝑍) = (𝑌(+g𝐺)((invg𝐺)‘𝑍)))
2317, 20, 223brtr4d 5139 1 ((𝐺 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑍) (𝑌 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  lecple 17227  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867  oMndcomnd 33011  oGrpcogrp 33012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-omnd 33013  df-ogrp 33014
This theorem is referenced by:  ogrpsublt  33035  archiabllem1a  33145  archiabllem2c  33149  ornglmulle  33283  orngrmulle  33284
  Copyright terms: Public domain W3C validator