| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ogrpsub | Structured version Visualization version GIF version | ||
| Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| Ref | Expression |
|---|---|
| ogrpsub.0 | ⊢ 𝐵 = (Base‘𝐺) |
| ogrpsub.1 | ⊢ ≤ = (le‘𝐺) |
| ogrpsub.2 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| ogrpsub | ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isogrp 20036 | . . . . 5 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ oMnd) |
| 4 | simp21 1207 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) | |
| 5 | simp22 1208 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) | |
| 6 | ogrpgrp 20037 | . . . . 5 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) | |
| 7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ Grp) |
| 8 | simp23 1209 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑍 ∈ 𝐵) | |
| 9 | ogrpsub.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | eqid 2731 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 11 | 9, 10 | grpinvcl 18900 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 12 | 7, 8, 11 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
| 13 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) | |
| 14 | ogrpsub.1 | . . . 4 ⊢ ≤ = (le‘𝐺) | |
| 15 | eqid 2731 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 9, 14, 15 | omndadd 20040 | . . 3 ⊢ ((𝐺 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 17 | 3, 4, 5, 12, 13, 16 | syl131anc 1385 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 18 | ogrpsub.2 | . . . 4 ⊢ − = (-g‘𝐺) | |
| 19 | 9, 15, 10, 18 | grpsubval 18898 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 20 | 4, 8, 19 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 21 | 9, 15, 10, 18 | grpsubval 18898 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 22 | 5, 8, 21 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
| 23 | 17, 20, 22 | 3brtr4d 5121 | 1 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 lecple 17168 Grpcgrp 18846 invgcminusg 18847 -gcsg 18848 oMndcomnd 20031 oGrpcogrp 20032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-omnd 20033 df-ogrp 20034 |
| This theorem is referenced by: ogrpsublt 20054 ornglmulle 20782 orngrmulle 20783 archiabllem1a 33160 archiabllem2c 33164 |
| Copyright terms: Public domain | W3C validator |