![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpsub | Structured version Visualization version GIF version |
Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
ogrpsub.0 | ⊢ 𝐵 = (Base‘𝐺) |
ogrpsub.1 | ⊢ ≤ = (le‘𝐺) |
ogrpsub.2 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
ogrpsub | ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 32688 | . . . . 5 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
3 | 2 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ oMnd) |
4 | simp21 1203 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) | |
5 | simp22 1204 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) | |
6 | ogrpgrp 32689 | . . . . 5 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) | |
7 | 6 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ Grp) |
8 | simp23 1205 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑍 ∈ 𝐵) | |
9 | ogrpsub.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
10 | eqid 2724 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
11 | 9, 10 | grpinvcl 18907 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
12 | 7, 8, 11 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
13 | simp3 1135 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) | |
14 | ogrpsub.1 | . . . 4 ⊢ ≤ = (le‘𝐺) | |
15 | eqid 2724 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 9, 14, 15 | omndadd 32692 | . . 3 ⊢ ((𝐺 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
17 | 3, 4, 5, 12, 13, 16 | syl131anc 1380 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
18 | ogrpsub.2 | . . . 4 ⊢ − = (-g‘𝐺) | |
19 | 9, 15, 10, 18 | grpsubval 18905 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
20 | 4, 8, 19 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
21 | 9, 15, 10, 18 | grpsubval 18905 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
22 | 5, 8, 21 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
23 | 17, 20, 22 | 3brtr4d 5170 | 1 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 Basecbs 17143 +gcplusg 17196 lecple 17203 Grpcgrp 18853 invgcminusg 18854 -gcsg 18855 oMndcomnd 32683 oGrpcogrp 32684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-grp 18856 df-minusg 18857 df-sbg 18858 df-omnd 32685 df-ogrp 32686 |
This theorem is referenced by: ogrpsublt 32707 archiabllem1a 32805 archiabllem2c 32809 ornglmulle 32889 orngrmulle 32890 |
Copyright terms: Public domain | W3C validator |