![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpsub | Structured version Visualization version GIF version |
Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
ogrpsub.0 | ⊢ 𝐵 = (Base‘𝐺) |
ogrpsub.1 | ⊢ ≤ = (le‘𝐺) |
ogrpsub.2 | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
ogrpsub | ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 33052 | . . . . 5 ⊢ (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd)) | |
2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ oMnd) |
3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ oMnd) |
4 | simp21 1206 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) | |
5 | simp22 1207 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) | |
6 | ogrpgrp 33053 | . . . . 5 ⊢ (𝐺 ∈ oGrp → 𝐺 ∈ Grp) | |
7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐺 ∈ Grp) |
8 | simp23 1208 | . . . 4 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑍 ∈ 𝐵) | |
9 | ogrpsub.0 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
10 | eqid 2740 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
11 | 9, 10 | grpinvcl 19027 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
12 | 7, 8, 11 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
13 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) | |
14 | ogrpsub.1 | . . . 4 ⊢ ≤ = (le‘𝐺) | |
15 | eqid 2740 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 9, 14, 15 | omndadd 33056 | . . 3 ⊢ ((𝐺 ∈ oMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
17 | 3, 4, 5, 12, 13, 16 | syl131anc 1383 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍)) ≤ (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
18 | ogrpsub.2 | . . . 4 ⊢ − = (-g‘𝐺) | |
19 | 9, 15, 10, 18 | grpsubval 19025 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
20 | 4, 8, 19 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
21 | 9, 15, 10, 18 | grpsubval 19025 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
22 | 5, 8, 21 | syl2anc 583 | . 2 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 − 𝑍) = (𝑌(+g‘𝐺)((invg‘𝐺)‘𝑍))) |
23 | 17, 20, 22 | 3brtr4d 5198 | 1 ⊢ ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 − 𝑍) ≤ (𝑌 − 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 lecple 17318 Grpcgrp 18973 invgcminusg 18974 -gcsg 18975 oMndcomnd 33047 oGrpcogrp 33048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-omnd 33049 df-ogrp 33050 |
This theorem is referenced by: ogrpsublt 33071 archiabllem1a 33171 archiabllem2c 33175 ornglmulle 33300 orngrmulle 33301 |
Copyright terms: Public domain | W3C validator |