Step | Hyp | Ref
| Expression |
1 | | simpllr 774 |
. . . 4
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ (π + π) β€ π) β π β π΅) |
2 | | simplrl 775 |
. . . 4
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ (π + π) β€ π) β 0 < π) |
3 | | simpr 485 |
. . . 4
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ (π + π) β€ π) β (π + π) β€ π) |
4 | | breq2 5151 |
. . . . . 6
β’ (π = π β ( 0 < π β 0 < π)) |
5 | | id 22 |
. . . . . . . 8
β’ (π = π β π = π) |
6 | 5, 5 | oveq12d 7423 |
. . . . . . 7
β’ (π = π β (π + π) = (π + π)) |
7 | 6 | breq1d 5157 |
. . . . . 6
β’ (π = π β ((π + π) β€ π β (π + π) β€ π)) |
8 | 4, 7 | anbi12d 631 |
. . . . 5
β’ (π = π β (( 0 < π β§ (π + π) β€ π) β ( 0 < π β§ (π + π) β€ π))) |
9 | 8 | rspcev 3612 |
. . . 4
β’ ((π β π΅ β§ ( 0 < π β§ (π + π) β€ π)) β βπ β π΅ ( 0 < π β§ (π + π) β€ π)) |
10 | 1, 2, 3, 9 | syl12anc 835 |
. . 3
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ (π + π) β€ π) β βπ β π΅ ( 0 < π β§ (π + π) β€ π)) |
11 | | simplll 773 |
. . . . . 6
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β π) |
12 | | archiabllem.g |
. . . . . 6
β’ (π β π β oGrp) |
13 | | ogrpgrp 32208 |
. . . . . 6
β’ (π β oGrp β π β Grp) |
14 | 11, 12, 13 | 3syl 18 |
. . . . 5
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β π β Grp) |
15 | | archiabllem2a.4 |
. . . . . 6
β’ (π β π β π΅) |
16 | 11, 15 | syl 17 |
. . . . 5
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β π β π΅) |
17 | | simpllr 774 |
. . . . 5
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β π β π΅) |
18 | | archiabllem.b |
. . . . . 6
β’ π΅ = (Baseβπ) |
19 | | eqid 2732 |
. . . . . 6
β’
(-gβπ) = (-gβπ) |
20 | 18, 19 | grpsubcl 18899 |
. . . . 5
β’ ((π β Grp β§ π β π΅ β§ π β π΅) β (π(-gβπ)π) β π΅) |
21 | 14, 16, 17, 20 | syl3anc 1371 |
. . . 4
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (π(-gβπ)π) β π΅) |
22 | | archiabllem.0 |
. . . . . . 7
β’ 0 =
(0gβπ) |
23 | 18, 22, 19 | grpsubid 18903 |
. . . . . 6
β’ ((π β Grp β§ π β π΅) β (π(-gβπ)π) = 0 ) |
24 | 14, 17, 23 | syl2anc 584 |
. . . . 5
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (π(-gβπ)π) = 0 ) |
25 | 11, 12 | syl 17 |
. . . . . 6
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β π β oGrp) |
26 | | simplrr 776 |
. . . . . 6
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β π < π) |
27 | | archiabllem.t |
. . . . . . 7
β’ < =
(ltβπ) |
28 | 18, 27, 19 | ogrpsublt 32226 |
. . . . . 6
β’ ((π β oGrp β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ π < π) β (π(-gβπ)π) < (π(-gβπ)π)) |
29 | 25, 17, 16, 17, 26, 28 | syl131anc 1383 |
. . . . 5
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (π(-gβπ)π) < (π(-gβπ)π)) |
30 | 24, 29 | eqbrtrrd 5171 |
. . . 4
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β 0 < (π(-gβπ)π)) |
31 | | archiabllem2.1 |
. . . . . . 7
β’ + =
(+gβπ) |
32 | | archiabllem2.2 |
. . . . . . . 8
β’ (π β
(oppgβπ) β oGrp) |
33 | 11, 32 | syl 17 |
. . . . . . 7
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (oppgβπ) β oGrp) |
34 | 18, 31 | grpcl 18823 |
. . . . . . . . . 10
β’ ((π β Grp β§ π β π΅ β§ π β π΅) β (π + π) β π΅) |
35 | 14, 17, 17, 34 | syl3anc 1371 |
. . . . . . . . 9
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (π + π) β π΅) |
36 | | simpr 485 |
. . . . . . . . 9
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β π < (π + π)) |
37 | 18, 27, 19 | ogrpsublt 32226 |
. . . . . . . . 9
β’ ((π β oGrp β§ (π β π΅ β§ (π + π) β π΅ β§ π β π΅) β§ π < (π + π)) β (π(-gβπ)π) < ((π + π)(-gβπ)π)) |
38 | 25, 16, 35, 17, 36, 37 | syl131anc 1383 |
. . . . . . . 8
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (π(-gβπ)π) < ((π + π)(-gβπ)π)) |
39 | 18, 31, 19 | grpaddsubass 18909 |
. . . . . . . . . 10
β’ ((π β Grp β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π + π)(-gβπ)π) = (π + (π(-gβπ)π))) |
40 | 14, 17, 17, 17, 39 | syl13anc 1372 |
. . . . . . . . 9
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β ((π + π)(-gβπ)π) = (π + (π(-gβπ)π))) |
41 | 24 | oveq2d 7421 |
. . . . . . . . 9
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (π + (π(-gβπ)π)) = (π + 0 )) |
42 | 18, 31, 22 | grprid 18849 |
. . . . . . . . . 10
β’ ((π β Grp β§ π β π΅) β (π + 0 ) = π) |
43 | 14, 17, 42 | syl2anc 584 |
. . . . . . . . 9
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (π + 0 ) = π) |
44 | 40, 41, 43 | 3eqtrd 2776 |
. . . . . . . 8
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β ((π + π)(-gβπ)π) = π) |
45 | 38, 44 | breqtrd 5173 |
. . . . . . 7
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (π(-gβπ)π) < π) |
46 | 18, 27, 31, 14, 33, 21, 17, 21, 45 | ogrpaddltrd 32224 |
. . . . . 6
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β ((π(-gβπ)π) + (π(-gβπ)π)) < ((π(-gβπ)π) + π)) |
47 | 18, 31, 19 | grpnpcan 18911 |
. . . . . . 7
β’ ((π β Grp β§ π β π΅ β§ π β π΅) β ((π(-gβπ)π) + π) = π) |
48 | 14, 16, 17, 47 | syl3anc 1371 |
. . . . . 6
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β ((π(-gβπ)π) + π) = π) |
49 | 46, 48 | breqtrd 5173 |
. . . . 5
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β ((π(-gβπ)π) + (π(-gβπ)π)) < π) |
50 | | ovexd 7440 |
. . . . . 6
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β ((π(-gβπ)π) + (π(-gβπ)π)) β V) |
51 | | archiabllem.e |
. . . . . . 7
β’ β€ =
(leβπ) |
52 | 51, 27 | pltle 18282 |
. . . . . 6
β’ ((π β Grp β§ ((π(-gβπ)π) + (π(-gβπ)π)) β V β§ π β π΅) β (((π(-gβπ)π) + (π(-gβπ)π)) < π β ((π(-gβπ)π) + (π(-gβπ)π)) β€ π)) |
53 | 14, 50, 16, 52 | syl3anc 1371 |
. . . . 5
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β (((π(-gβπ)π) + (π(-gβπ)π)) < π β ((π(-gβπ)π) + (π(-gβπ)π)) β€ π)) |
54 | 49, 53 | mpd 15 |
. . . 4
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β ((π(-gβπ)π) + (π(-gβπ)π)) β€ π) |
55 | | breq2 5151 |
. . . . . 6
β’ (π = (π(-gβπ)π) β ( 0 < π β 0 < (π(-gβπ)π))) |
56 | | id 22 |
. . . . . . . 8
β’ (π = (π(-gβπ)π) β π = (π(-gβπ)π)) |
57 | 56, 56 | oveq12d 7423 |
. . . . . . 7
β’ (π = (π(-gβπ)π) β (π + π) = ((π(-gβπ)π) + (π(-gβπ)π))) |
58 | 57 | breq1d 5157 |
. . . . . 6
β’ (π = (π(-gβπ)π) β ((π + π) β€ π β ((π(-gβπ)π) + (π(-gβπ)π)) β€ π)) |
59 | 55, 58 | anbi12d 631 |
. . . . 5
β’ (π = (π(-gβπ)π) β (( 0 < π β§ (π + π) β€ π) β ( 0 < (π(-gβπ)π) β§ ((π(-gβπ)π) + (π(-gβπ)π)) β€ π))) |
60 | 59 | rspcev 3612 |
. . . 4
β’ (((π(-gβπ)π) β π΅ β§ ( 0 < (π(-gβπ)π) β§ ((π(-gβπ)π) + (π(-gβπ)π)) β€ π)) β βπ β π΅ ( 0 < π β§ (π + π) β€ π)) |
61 | 21, 30, 54, 60 | syl12anc 835 |
. . 3
β’ ((((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β§ π < (π + π)) β βπ β π΅ ( 0 < π β§ (π + π) β€ π)) |
62 | 12 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β π β oGrp) |
63 | | isogrp 32207 |
. . . . . 6
β’ (π β oGrp β (π β Grp β§ π β oMnd)) |
64 | 63 | simprbi 497 |
. . . . 5
β’ (π β oGrp β π β oMnd) |
65 | | omndtos 32210 |
. . . . 5
β’ (π β oMnd β π β Toset) |
66 | 62, 64, 65 | 3syl 18 |
. . . 4
β’ (((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β π β Toset) |
67 | 62, 13 | syl 17 |
. . . . 5
β’ (((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β π β Grp) |
68 | | simplr 767 |
. . . . 5
β’ (((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β π β π΅) |
69 | 67, 68, 68, 34 | syl3anc 1371 |
. . . 4
β’ (((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β (π + π) β π΅) |
70 | 15 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β π β π΅) |
71 | 18, 51, 27 | tlt2 32126 |
. . . 4
β’ ((π β Toset β§ (π + π) β π΅ β§ π β π΅) β ((π + π) β€ π β¨ π < (π + π))) |
72 | 66, 69, 70, 71 | syl3anc 1371 |
. . 3
β’ (((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β ((π + π) β€ π β¨ π < (π + π))) |
73 | 10, 61, 72 | mpjaodan 957 |
. 2
β’ (((π β§ π β π΅) β§ ( 0 < π β§ π < π)) β βπ β π΅ ( 0 < π β§ (π + π) β€ π)) |
74 | | archiabllem2.3 |
. . . . 5
β’ ((π β§ π β π΅ β§ 0 < π) β βπ β π΅ ( 0 < π β§ π < π)) |
75 | 74 | 3expia 1121 |
. . . 4
β’ ((π β§ π β π΅) β ( 0 < π β βπ β π΅ ( 0 < π β§ π < π))) |
76 | 75 | ralrimiva 3146 |
. . 3
β’ (π β βπ β π΅ ( 0 < π β βπ β π΅ ( 0 < π β§ π < π))) |
77 | | archiabllem2a.5 |
. . 3
β’ (π β 0 < π) |
78 | | breq2 5151 |
. . . . 5
β’ (π = π β ( 0 < π β 0 < π)) |
79 | | breq2 5151 |
. . . . . . 7
β’ (π = π β (π < π β π < π)) |
80 | 79 | anbi2d 629 |
. . . . . 6
β’ (π = π β (( 0 < π β§ π < π) β ( 0 < π β§ π < π))) |
81 | 80 | rexbidv 3178 |
. . . . 5
β’ (π = π β (βπ β π΅ ( 0 < π β§ π < π) β βπ β π΅ ( 0 < π β§ π < π))) |
82 | 78, 81 | imbi12d 344 |
. . . 4
β’ (π = π β (( 0 < π β βπ β π΅ ( 0 < π β§ π < π)) β ( 0 < π β βπ β π΅ ( 0 < π β§ π < π)))) |
83 | 82 | rspcv 3608 |
. . 3
β’ (π β π΅ β (βπ β π΅ ( 0 < π β βπ β π΅ ( 0 < π β§ π < π)) β ( 0 < π β βπ β π΅ ( 0 < π β§ π < π)))) |
84 | 15, 76, 77, 83 | syl3c 66 |
. 2
β’ (π β βπ β π΅ ( 0 < π β§ π < π)) |
85 | 73, 84 | r19.29a 3162 |
1
β’ (π β βπ β π΅ ( 0 < π β§ (π + π) β€ π)) |