![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2 | Structured version Visualization version GIF version |
Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
archiabllem.b | β’ π΅ = (Baseβπ) |
archiabllem.0 | β’ 0 = (0gβπ) |
archiabllem.e | β’ β€ = (leβπ) |
archiabllem.t | β’ < = (ltβπ) |
archiabllem.m | β’ Β· = (.gβπ) |
archiabllem.g | β’ (π β π β oGrp) |
archiabllem.a | β’ (π β π β Archi) |
archiabllem2.1 | β’ + = (+gβπ) |
archiabllem2.2 | β’ (π β (oppgβπ) β oGrp) |
archiabllem2.3 | β’ ((π β§ π β π΅ β§ 0 < π) β βπ β π΅ ( 0 < π β§ π < π)) |
Ref | Expression |
---|---|
archiabllem2 | β’ (π β π β Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiabllem.g | . . 3 β’ (π β π β oGrp) | |
2 | ogrpgrp 32488 | . . 3 β’ (π β oGrp β π β Grp) | |
3 | 1, 2 | syl 17 | . 2 β’ (π β π β Grp) |
4 | archiabllem.b | . . . . 5 β’ π΅ = (Baseβπ) | |
5 | archiabllem.0 | . . . . 5 β’ 0 = (0gβπ) | |
6 | archiabllem.e | . . . . 5 β’ β€ = (leβπ) | |
7 | archiabllem.t | . . . . 5 β’ < = (ltβπ) | |
8 | archiabllem.m | . . . . 5 β’ Β· = (.gβπ) | |
9 | 1 | 3ad2ant1 1132 | . . . . 5 β’ ((π β§ π₯ β π΅ β§ π¦ β π΅) β π β oGrp) |
10 | archiabllem.a | . . . . . 6 β’ (π β π β Archi) | |
11 | 10 | 3ad2ant1 1132 | . . . . 5 β’ ((π β§ π₯ β π΅ β§ π¦ β π΅) β π β Archi) |
12 | archiabllem2.1 | . . . . 5 β’ + = (+gβπ) | |
13 | archiabllem2.2 | . . . . . 6 β’ (π β (oppgβπ) β oGrp) | |
14 | 13 | 3ad2ant1 1132 | . . . . 5 β’ ((π β§ π₯ β π΅ β§ π¦ β π΅) β (oppgβπ) β oGrp) |
15 | simp1 1135 | . . . . . 6 β’ ((π β§ π₯ β π΅ β§ π¦ β π΅) β π) | |
16 | archiabllem2.3 | . . . . . 6 β’ ((π β§ π β π΅ β§ 0 < π) β βπ β π΅ ( 0 < π β§ π < π)) | |
17 | 15, 16 | syl3an1 1162 | . . . . 5 β’ (((π β§ π₯ β π΅ β§ π¦ β π΅) β§ π β π΅ β§ 0 < π) β βπ β π΅ ( 0 < π β§ π < π)) |
18 | simp2 1136 | . . . . 5 β’ ((π β§ π₯ β π΅ β§ π¦ β π΅) β π₯ β π΅) | |
19 | simp3 1137 | . . . . 5 β’ ((π β§ π₯ β π΅ β§ π¦ β π΅) β π¦ β π΅) | |
20 | 4, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19 | archiabllem2b 32609 | . . . 4 β’ ((π β§ π₯ β π΅ β§ π¦ β π΅) β (π₯ + π¦) = (π¦ + π₯)) |
21 | 20 | 3expb 1119 | . . 3 β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯ + π¦) = (π¦ + π₯)) |
22 | 21 | ralrimivva 3199 | . 2 β’ (π β βπ₯ β π΅ βπ¦ β π΅ (π₯ + π¦) = (π¦ + π₯)) |
23 | 4, 12 | isabl2 19700 | . 2 β’ (π β Abel β (π β Grp β§ βπ₯ β π΅ βπ¦ β π΅ (π₯ + π¦) = (π¦ + π₯))) |
24 | 3, 22, 23 | sylanbrc 582 | 1 β’ (π β π β Abel) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 βwrex 3069 class class class wbr 5149 βcfv 6544 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 lecple 17209 0gc0g 17390 ltcplt 18266 Grpcgrp 18856 .gcmg 18987 oppgcoppg 19251 Abelcabl 19691 oGrpcogrp 32483 Archicarchi 32590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-seq 13972 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-ple 17222 df-0g 17392 df-proset 18253 df-poset 18271 df-plt 18288 df-toset 18375 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-oppg 19252 df-cmn 19692 df-abl 19693 df-omnd 32484 df-ogrp 32485 df-inftm 32591 df-archi 32592 |
This theorem is referenced by: archiabl 32611 |
Copyright terms: Public domain | W3C validator |