Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2 Structured version   Visualization version   GIF version

Theorem archiabllem2 31353
Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem2.1 + = (+g𝑊)
archiabllem2.2 (𝜑 → (oppg𝑊) ∈ oGrp)
archiabllem2.3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
Assertion
Ref Expression
archiabllem2 (𝜑𝑊 ∈ Abel)
Distinct variable groups:   𝑎,𝑏,𝐵   𝑊,𝑎,𝑏   𝜑,𝑎,𝑏   + ,𝑎,𝑏   ,𝑎,𝑏   < ,𝑎,𝑏   0 ,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem archiabllem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
2 ogrpgrp 31231 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝜑𝑊 ∈ Grp)
4 archiabllem.b . . . . 5 𝐵 = (Base‘𝑊)
5 archiabllem.0 . . . . 5 0 = (0g𝑊)
6 archiabllem.e . . . . 5 = (le‘𝑊)
7 archiabllem.t . . . . 5 < = (lt‘𝑊)
8 archiabllem.m . . . . 5 · = (.g𝑊)
913ad2ant1 1131 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → 𝑊 ∈ oGrp)
10 archiabllem.a . . . . . 6 (𝜑𝑊 ∈ Archi)
11103ad2ant1 1131 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → 𝑊 ∈ Archi)
12 archiabllem2.1 . . . . 5 + = (+g𝑊)
13 archiabllem2.2 . . . . . 6 (𝜑 → (oppg𝑊) ∈ oGrp)
14133ad2ant1 1131 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (oppg𝑊) ∈ oGrp)
15 simp1 1134 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → 𝜑)
16 archiabllem2.3 . . . . . 6 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
1715, 16syl3an1 1161 . . . . 5 (((𝜑𝑥𝐵𝑦𝐵) ∧ 𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
18 simp2 1135 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → 𝑥𝐵)
19 simp3 1136 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → 𝑦𝐵)
204, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19archiabllem2b 31352 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
21203expb 1118 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2221ralrimivva 3114 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))
234, 12isabl2 19310 . 2 (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
243, 22, 23sylanbrc 582 1 (𝜑𝑊 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  lecple 16895  0gc0g 17067  ltcplt 17941  Grpcgrp 18492  .gcmg 18615  oppgcoppg 18864  Abelcabl 19302  oGrpcogrp 31226  Archicarchi 31333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-ple 16908  df-0g 17069  df-proset 17928  df-poset 17946  df-plt 17963  df-toset 18050  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-oppg 18865  df-cmn 19303  df-abl 19304  df-omnd 31227  df-ogrp 31228  df-inftm 31334  df-archi 31335
This theorem is referenced by:  archiabl  31354
  Copyright terms: Public domain W3C validator