![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2 | Structured version Visualization version GIF version |
Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
archiabllem.b | ⊢ 𝐵 = (Base‘𝑊) |
archiabllem.0 | ⊢ 0 = (0g‘𝑊) |
archiabllem.e | ⊢ ≤ = (le‘𝑊) |
archiabllem.t | ⊢ < = (lt‘𝑊) |
archiabllem.m | ⊢ · = (.g‘𝑊) |
archiabllem.g | ⊢ (𝜑 → 𝑊 ∈ oGrp) |
archiabllem.a | ⊢ (𝜑 → 𝑊 ∈ Archi) |
archiabllem2.1 | ⊢ + = (+g‘𝑊) |
archiabllem2.2 | ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) |
archiabllem2.3 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
Ref | Expression |
---|---|
archiabllem2 | ⊢ (𝜑 → 𝑊 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiabllem.g | . . 3 ⊢ (𝜑 → 𝑊 ∈ oGrp) | |
2 | ogrpgrp 30448 | . . 3 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ Grp) |
4 | archiabllem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
5 | archiabllem.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | archiabllem.e | . . . . 5 ⊢ ≤ = (le‘𝑊) | |
7 | archiabllem.t | . . . . 5 ⊢ < = (lt‘𝑊) | |
8 | archiabllem.m | . . . . 5 ⊢ · = (.g‘𝑊) | |
9 | 1 | 3ad2ant1 1114 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ oGrp) |
10 | archiabllem.a | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Archi) | |
11 | 10 | 3ad2ant1 1114 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ Archi) |
12 | archiabllem2.1 | . . . . 5 ⊢ + = (+g‘𝑊) | |
13 | archiabllem2.2 | . . . . . 6 ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) | |
14 | 13 | 3ad2ant1 1114 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (oppg‘𝑊) ∈ oGrp) |
15 | simp1 1117 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
16 | archiabllem2.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) | |
17 | 15, 16 | syl3an1 1144 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
18 | simp2 1118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
19 | simp3 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
20 | 4, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19 | archiabllem2b 30523 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
21 | 20 | 3expb 1101 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
22 | 21 | ralrimivva 3134 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
23 | 4, 12 | isabl2 18686 | . 2 ⊢ (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
24 | 3, 22, 23 | sylanbrc 575 | 1 ⊢ (𝜑 → 𝑊 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∀wral 3081 ∃wrex 3082 class class class wbr 4925 ‘cfv 6185 (class class class)co 6974 Basecbs 16337 +gcplusg 16419 lecple 16426 0gc0g 16567 ltcplt 17421 Grpcgrp 17903 .gcmg 18023 oppgcoppg 18256 Abelcabl 18679 oGrpcogrp 30443 Archicarchi 30504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-tpos 7693 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-dec 11910 df-uz 12057 df-fz 12707 df-seq 13183 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-plusg 16432 df-ple 16439 df-0g 16569 df-proset 17408 df-poset 17426 df-plt 17438 df-toset 17514 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-oppg 18257 df-cmn 18680 df-abl 18681 df-omnd 30444 df-ogrp 30445 df-inftm 30505 df-archi 30506 |
This theorem is referenced by: archiabl 30525 |
Copyright terms: Public domain | W3C validator |