| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2 | Structured version Visualization version GIF version | ||
| Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.) |
| Ref | Expression |
|---|---|
| archiabllem.b | ⊢ 𝐵 = (Base‘𝑊) |
| archiabllem.0 | ⊢ 0 = (0g‘𝑊) |
| archiabllem.e | ⊢ ≤ = (le‘𝑊) |
| archiabllem.t | ⊢ < = (lt‘𝑊) |
| archiabllem.m | ⊢ · = (.g‘𝑊) |
| archiabllem.g | ⊢ (𝜑 → 𝑊 ∈ oGrp) |
| archiabllem.a | ⊢ (𝜑 → 𝑊 ∈ Archi) |
| archiabllem2.1 | ⊢ + = (+g‘𝑊) |
| archiabllem2.2 | ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) |
| archiabllem2.3 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
| Ref | Expression |
|---|---|
| archiabllem2 | ⊢ (𝜑 → 𝑊 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | archiabllem.g | . . 3 ⊢ (𝜑 → 𝑊 ∈ oGrp) | |
| 2 | ogrpgrp 33076 | . . 3 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 4 | archiabllem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 5 | archiabllem.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 6 | archiabllem.e | . . . . 5 ⊢ ≤ = (le‘𝑊) | |
| 7 | archiabllem.t | . . . . 5 ⊢ < = (lt‘𝑊) | |
| 8 | archiabllem.m | . . . . 5 ⊢ · = (.g‘𝑊) | |
| 9 | 1 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ oGrp) |
| 10 | archiabllem.a | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Archi) | |
| 11 | 10 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ Archi) |
| 12 | archiabllem2.1 | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 13 | archiabllem2.2 | . . . . . 6 ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) | |
| 14 | 13 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (oppg‘𝑊) ∈ oGrp) |
| 15 | simp1 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 16 | archiabllem2.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) | |
| 17 | 15, 16 | syl3an1 1163 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
| 18 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 19 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 20 | 4, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19 | archiabllem2b 33199 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 21 | 20 | 3expb 1120 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 22 | 21 | ralrimivva 3188 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 23 | 4, 12 | isabl2 19776 | . 2 ⊢ (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 24 | 3, 22, 23 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 lecple 17283 0gc0g 17458 ltcplt 18325 Grpcgrp 18921 .gcmg 19055 oppgcoppg 19333 Abelcabl 19767 oGrpcogrp 33071 Archicarchi 33180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-seq 14025 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-ple 17296 df-0g 17460 df-proset 18311 df-poset 18330 df-plt 18345 df-toset 18432 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-oppg 19334 df-cmn 19768 df-abl 19769 df-omnd 33072 df-ogrp 33073 df-inftm 33181 df-archi 33182 |
| This theorem is referenced by: archiabl 33201 |
| Copyright terms: Public domain | W3C validator |