| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2 | Structured version Visualization version GIF version | ||
| Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.) |
| Ref | Expression |
|---|---|
| archiabllem.b | ⊢ 𝐵 = (Base‘𝑊) |
| archiabllem.0 | ⊢ 0 = (0g‘𝑊) |
| archiabllem.e | ⊢ ≤ = (le‘𝑊) |
| archiabllem.t | ⊢ < = (lt‘𝑊) |
| archiabllem.m | ⊢ · = (.g‘𝑊) |
| archiabllem.g | ⊢ (𝜑 → 𝑊 ∈ oGrp) |
| archiabllem.a | ⊢ (𝜑 → 𝑊 ∈ Archi) |
| archiabllem2.1 | ⊢ + = (+g‘𝑊) |
| archiabllem2.2 | ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) |
| archiabllem2.3 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
| Ref | Expression |
|---|---|
| archiabllem2 | ⊢ (𝜑 → 𝑊 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | archiabllem.g | . . 3 ⊢ (𝜑 → 𝑊 ∈ oGrp) | |
| 2 | ogrpgrp 20004 | . . 3 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 4 | archiabllem.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 5 | archiabllem.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 6 | archiabllem.e | . . . . 5 ⊢ ≤ = (le‘𝑊) | |
| 7 | archiabllem.t | . . . . 5 ⊢ < = (lt‘𝑊) | |
| 8 | archiabllem.m | . . . . 5 ⊢ · = (.g‘𝑊) | |
| 9 | 1 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ oGrp) |
| 10 | archiabllem.a | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Archi) | |
| 11 | 10 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ Archi) |
| 12 | archiabllem2.1 | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 13 | archiabllem2.2 | . . . . . 6 ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) | |
| 14 | 13 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (oppg‘𝑊) ∈ oGrp) |
| 15 | simp1 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
| 16 | archiabllem2.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) | |
| 17 | 15, 16 | syl3an1 1163 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
| 18 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 19 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 20 | 4, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19 | archiabllem2b 33138 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 21 | 20 | 3expb 1120 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 22 | 21 | ralrimivva 3172 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 23 | 4, 12 | isabl2 19669 | . 2 ⊢ (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 24 | 3, 22, 23 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 lecple 17168 0gc0g 17343 ltcplt 18214 Grpcgrp 18812 .gcmg 18946 oppgcoppg 19224 Abelcabl 19660 oGrpcogrp 19999 Archicarchi 33119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-seq 13909 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-ple 17181 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-toset 18321 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-oppg 19225 df-cmn 19661 df-abl 19662 df-omnd 20000 df-ogrp 20001 df-inftm 33120 df-archi 33121 |
| This theorem is referenced by: archiabl 33140 |
| Copyright terms: Public domain | W3C validator |