Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2 Structured version   Visualization version   GIF version

Theorem archiabllem2 33200
Description: Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem2.1 + = (+g𝑊)
archiabllem2.2 (𝜑 → (oppg𝑊) ∈ oGrp)
archiabllem2.3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
Assertion
Ref Expression
archiabllem2 (𝜑𝑊 ∈ Abel)
Distinct variable groups:   𝑎,𝑏,𝐵   𝑊,𝑎,𝑏   𝜑,𝑎,𝑏   + ,𝑎,𝑏   ,𝑎,𝑏   < ,𝑎,𝑏   0 ,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem archiabllem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
2 ogrpgrp 33076 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝜑𝑊 ∈ Grp)
4 archiabllem.b . . . . 5 𝐵 = (Base‘𝑊)
5 archiabllem.0 . . . . 5 0 = (0g𝑊)
6 archiabllem.e . . . . 5 = (le‘𝑊)
7 archiabllem.t . . . . 5 < = (lt‘𝑊)
8 archiabllem.m . . . . 5 · = (.g𝑊)
913ad2ant1 1133 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → 𝑊 ∈ oGrp)
10 archiabllem.a . . . . . 6 (𝜑𝑊 ∈ Archi)
11103ad2ant1 1133 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → 𝑊 ∈ Archi)
12 archiabllem2.1 . . . . 5 + = (+g𝑊)
13 archiabllem2.2 . . . . . 6 (𝜑 → (oppg𝑊) ∈ oGrp)
14133ad2ant1 1133 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (oppg𝑊) ∈ oGrp)
15 simp1 1136 . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → 𝜑)
16 archiabllem2.3 . . . . . 6 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
1715, 16syl3an1 1163 . . . . 5 (((𝜑𝑥𝐵𝑦𝐵) ∧ 𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
18 simp2 1137 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → 𝑥𝐵)
19 simp3 1138 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → 𝑦𝐵)
204, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19archiabllem2b 33199 . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
21203expb 1120 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2221ralrimivva 3188 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))
234, 12isabl2 19776 . 2 (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
243, 22, 23sylanbrc 583 1 (𝜑𝑊 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  lecple 17283  0gc0g 17458  ltcplt 18325  Grpcgrp 18921  .gcmg 19055  oppgcoppg 19333  Abelcabl 19767  oGrpcogrp 33071  Archicarchi 33180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-seq 14025  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-ple 17296  df-0g 17460  df-proset 18311  df-poset 18330  df-plt 18345  df-toset 18432  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-oppg 19334  df-cmn 19768  df-abl 19769  df-omnd 33072  df-ogrp 33073  df-inftm 33181  df-archi 33182
This theorem is referenced by:  archiabl  33201
  Copyright terms: Public domain W3C validator