Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmnd Structured version   Visualization version   GIF version

Theorem omndmnd 33072
Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Assertion
Ref Expression
omndmnd (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)

Proof of Theorem omndmnd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2735 . . 3 (+g𝑀) = (+g𝑀)
3 eqid 2735 . . 3 (le‘𝑀) = (le‘𝑀)
41, 2, 3isomnd 33069 . 2 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))))
54simp1bi 1145 1 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3051   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  lecple 17278  Tosetctos 18426  Mndcmnd 18712  oMndcomnd 33065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-omnd 33067
This theorem is referenced by:  omndadd2d  33076  omndadd2rd  33077  omndmul2  33080  omndmul3  33081  omndmul  33082  ogrpinv0le  33083  gsumle  33092  archirng  33186
  Copyright terms: Public domain W3C validator