| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omndmnd | Structured version Visualization version GIF version | ||
| Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndmnd | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2731 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | eqid 2731 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
| 4 | 1, 2, 3 | isomnd 20036 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
| 5 | 4 | simp1bi 1145 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 lecple 17168 Tosetctos 18320 Mndcmnd 18642 oMndcomnd 20032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-omnd 20034 |
| This theorem is referenced by: omndadd2d 20043 omndadd2rd 20044 omndmul2 20046 omndmul3 20047 omndmul 20048 ogrpinv0le 20049 gsumle 20058 archirng 33155 |
| Copyright terms: Public domain | W3C validator |