![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmnd | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndmnd | β’ (π β oMnd β π β Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2733 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2733 | . . 3 β’ (leβπ) = (leβπ) | |
4 | 1, 2, 3 | isomnd 32219 | . 2 β’ (π β oMnd β (π β Mnd β§ π β Toset β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ β (Baseβπ)(π(leβπ)π β (π(+gβπ)π)(leβπ)(π(+gβπ)π)))) |
5 | 4 | simp1bi 1146 | 1 β’ (π β oMnd β π β Mnd) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2107 βwral 3062 class class class wbr 5149 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 lecple 17204 Tosetctos 18369 Mndcmnd 18625 oMndcomnd 32215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-omnd 32217 |
This theorem is referenced by: omndadd2d 32226 omndadd2rd 32227 omndmul2 32230 omndmul3 32231 omndmul 32232 ogrpinv0le 32233 gsumle 32242 archirng 32334 |
Copyright terms: Public domain | W3C validator |