Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmnd | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndmnd | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | eqid 2738 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 31229 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
5 | 4 | simp1bi 1143 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 lecple 16895 Tosetctos 18049 Mndcmnd 18300 oMndcomnd 31225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-omnd 31227 |
This theorem is referenced by: omndadd2d 31236 omndadd2rd 31237 omndmul2 31240 omndmul3 31241 omndmul 31242 ogrpinv0le 31243 gsumle 31252 archirng 31344 |
Copyright terms: Public domain | W3C validator |