| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmnd | Structured version Visualization version GIF version | ||
| Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndmnd | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | eqid 2730 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
| 4 | 1, 2, 3 | isomnd 33022 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
| 5 | 4 | simp1bi 1145 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 lecple 17234 Tosetctos 18382 Mndcmnd 18668 oMndcomnd 33018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-omnd 33020 |
| This theorem is referenced by: omndadd2d 33029 omndadd2rd 33030 omndmul2 33033 omndmul3 33034 omndmul 33035 ogrpinv0le 33036 gsumle 33045 archirng 33149 |
| Copyright terms: Public domain | W3C validator |