MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omndmnd Structured version   Visualization version   GIF version

Theorem omndmnd 20023
Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Assertion
Ref Expression
omndmnd (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)

Proof of Theorem omndmnd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2729 . . 3 (+g𝑀) = (+g𝑀)
3 eqid 2729 . . 3 (le‘𝑀) = (le‘𝑀)
41, 2, 3isomnd 20020 . 2 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))))
54simp1bi 1145 1 (𝑀 ∈ oMnd → 𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  lecple 17186  Tosetctos 18338  Mndcmnd 18626  oMndcomnd 20016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-omnd 20018
This theorem is referenced by:  omndadd2d  20027  omndadd2rd  20028  omndmul2  20030  omndmul3  20031  omndmul  20032  ogrpinv0le  20033  gsumle  20042  archirng  33143
  Copyright terms: Public domain W3C validator