![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmnd | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndmnd | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2740 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | eqid 2740 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 33051 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
5 | 4 | simp1bi 1145 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 lecple 17318 Tosetctos 18486 Mndcmnd 18772 oMndcomnd 33047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-omnd 33049 |
This theorem is referenced by: omndadd2d 33058 omndadd2rd 33059 omndmul2 33062 omndmul3 33063 omndmul 33064 ogrpinv0le 33065 gsumle 33074 archirng 33168 |
Copyright terms: Public domain | W3C validator |