![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmnd | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndmnd | β’ (π β oMnd β π β Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2726 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2726 | . . 3 β’ (leβπ) = (leβπ) | |
4 | 1, 2, 3 | isomnd 32722 | . 2 β’ (π β oMnd β (π β Mnd β§ π β Toset β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ β (Baseβπ)(π(leβπ)π β (π(+gβπ)π)(leβπ)(π(+gβπ)π)))) |
5 | 4 | simp1bi 1142 | 1 β’ (π β oMnd β π β Mnd) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 βwral 3055 class class class wbr 5141 βcfv 6536 (class class class)co 7404 Basecbs 17150 +gcplusg 17203 lecple 17210 Tosetctos 18378 Mndcmnd 18664 oMndcomnd 32718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-nul 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6488 df-fv 6544 df-ov 7407 df-omnd 32720 |
This theorem is referenced by: omndadd2d 32729 omndadd2rd 32730 omndmul2 32733 omndmul3 32734 omndmul 32735 ogrpinv0le 32736 gsumle 32745 archirng 32837 |
Copyright terms: Public domain | W3C validator |