Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmnd | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndmnd | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2736 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | eqid 2736 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 31527 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
5 | 4 | simp1bi 1144 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∀wral 3061 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 +gcplusg 17051 lecple 17058 Tosetctos 18223 Mndcmnd 18474 oMndcomnd 31523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-omnd 31525 |
This theorem is referenced by: omndadd2d 31534 omndadd2rd 31535 omndmul2 31538 omndmul3 31539 omndmul 31540 ogrpinv0le 31541 gsumle 31550 archirng 31642 |
Copyright terms: Public domain | W3C validator |