![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndmnd | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndmnd | β’ (π β oMnd β π β Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2728 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2728 | . . 3 β’ (leβπ) = (leβπ) | |
4 | 1, 2, 3 | isomnd 32802 | . 2 β’ (π β oMnd β (π β Mnd β§ π β Toset β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ β (Baseβπ)(π(leβπ)π β (π(+gβπ)π)(leβπ)(π(+gβπ)π)))) |
5 | 4 | simp1bi 1142 | 1 β’ (π β oMnd β π β Mnd) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 βwral 3058 class class class wbr 5152 βcfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 lecple 17247 Tosetctos 18415 Mndcmnd 18701 oMndcomnd 32798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-nul 5310 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-ov 7429 df-omnd 32800 |
This theorem is referenced by: omndadd2d 32809 omndadd2rd 32810 omndmul2 32813 omndmul3 32814 omndmul 32815 ogrpinv0le 32816 gsumle 32825 archirng 32917 |
Copyright terms: Public domain | W3C validator |