Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinv0lt Structured version   Visualization version   GIF version

Theorem ogrpinv0lt 33072
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpinvlt.0 𝐵 = (Base‘𝐺)
ogrpinvlt.1 < = (lt‘𝐺)
ogrpinvlt.2 𝐼 = (invg𝐺)
ogrpinv0lt.3 0 = (0g𝐺)
Assertion
Ref Expression
ogrpinv0lt ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ (𝐼𝑋) < 0 ))

Proof of Theorem ogrpinv0lt
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝐺 ∈ oGrp)
2 ogrpgrp 33053 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝐺 ∈ Grp)
4 ogrpinvlt.0 . . . . . 6 𝐵 = (Base‘𝐺)
5 ogrpinv0lt.3 . . . . . 6 0 = (0g𝐺)
64, 5grpidcl 19005 . . . . 5 (𝐺 ∈ Grp → 0𝐵)
73, 6syl 17 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 0𝐵)
8 simplr 768 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝑋𝐵)
9 ogrpinvlt.2 . . . . . 6 𝐼 = (invg𝐺)
104, 9grpinvcl 19027 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
113, 8, 10syl2anc 583 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝐼𝑋) ∈ 𝐵)
12 simpr 484 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 0 < 𝑋)
13 ogrpinvlt.1 . . . . 5 < = (lt‘𝐺)
14 eqid 2740 . . . . 5 (+g𝐺) = (+g𝐺)
154, 13, 14ogrpaddlt 33067 . . . 4 ((𝐺 ∈ oGrp ∧ ( 0𝐵𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) < (𝑋(+g𝐺)(𝐼𝑋)))
161, 7, 8, 11, 12, 15syl131anc 1383 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) < (𝑋(+g𝐺)(𝐼𝑋)))
174, 14, 5grplid 19007 . . . 4 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
183, 11, 17syl2anc 583 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
194, 14, 5, 9grprinv 19030 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
203, 8, 19syl2anc 583 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2116, 18, 203brtr3d 5197 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝐼𝑋) < 0 )
22 simpll 766 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝐺 ∈ oGrp)
2322, 2syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝐺 ∈ Grp)
24 simplr 768 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝑋𝐵)
2523, 24, 10syl2anc 583 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → (𝐼𝑋) ∈ 𝐵)
2622, 2, 63syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 0𝐵)
27 simpr 484 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → (𝐼𝑋) < 0 )
284, 13, 14ogrpaddlt 33067 . . . 4 ((𝐺 ∈ oGrp ∧ ((𝐼𝑋) ∈ 𝐵0𝐵𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) < ( 0 (+g𝐺)𝑋))
2922, 25, 26, 24, 27, 28syl131anc 1383 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) < ( 0 (+g𝐺)𝑋))
304, 14, 5, 9grplinv 19029 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
3123, 24, 30syl2anc 583 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
324, 14, 5grplid 19007 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)𝑋) = 𝑋)
3323, 24, 32syl2anc 583 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ( 0 (+g𝐺)𝑋) = 𝑋)
3429, 31, 333brtr3d 5197 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 0 < 𝑋)
3521, 34impbida 800 1 ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ (𝐼𝑋) < 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  ltcplt 18378  Grpcgrp 18973  invgcminusg 18974  oGrpcogrp 33048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-plt 18400  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-omnd 33049  df-ogrp 33050
This theorem is referenced by:  archirngz  33169
  Copyright terms: Public domain W3C validator