Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinv0lt Structured version   Visualization version   GIF version

Theorem ogrpinv0lt 31250
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpinvlt.0 𝐵 = (Base‘𝐺)
ogrpinvlt.1 < = (lt‘𝐺)
ogrpinvlt.2 𝐼 = (invg𝐺)
ogrpinv0lt.3 0 = (0g𝐺)
Assertion
Ref Expression
ogrpinv0lt ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ (𝐼𝑋) < 0 ))

Proof of Theorem ogrpinv0lt
StepHypRef Expression
1 simpll 763 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝐺 ∈ oGrp)
2 ogrpgrp 31231 . . . . . 6 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝐺 ∈ Grp)
4 ogrpinvlt.0 . . . . . 6 𝐵 = (Base‘𝐺)
5 ogrpinv0lt.3 . . . . . 6 0 = (0g𝐺)
64, 5grpidcl 18522 . . . . 5 (𝐺 ∈ Grp → 0𝐵)
73, 6syl 17 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 0𝐵)
8 simplr 765 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 𝑋𝐵)
9 ogrpinvlt.2 . . . . . 6 𝐼 = (invg𝐺)
104, 9grpinvcl 18542 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
113, 8, 10syl2anc 583 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝐼𝑋) ∈ 𝐵)
12 simpr 484 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → 0 < 𝑋)
13 ogrpinvlt.1 . . . . 5 < = (lt‘𝐺)
14 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
154, 13, 14ogrpaddlt 31245 . . . 4 ((𝐺 ∈ oGrp ∧ ( 0𝐵𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) < (𝑋(+g𝐺)(𝐼𝑋)))
161, 7, 8, 11, 12, 15syl131anc 1381 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) < (𝑋(+g𝐺)(𝐼𝑋)))
174, 14, 5grplid 18524 . . . 4 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
183, 11, 17syl2anc 583 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
194, 14, 5, 9grprinv 18544 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
203, 8, 19syl2anc 583 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2116, 18, 203brtr3d 5101 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → (𝐼𝑋) < 0 )
22 simpll 763 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝐺 ∈ oGrp)
2322, 2syl 17 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝐺 ∈ Grp)
24 simplr 765 . . . . 5 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 𝑋𝐵)
2523, 24, 10syl2anc 583 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → (𝐼𝑋) ∈ 𝐵)
2622, 2, 63syl 18 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 0𝐵)
27 simpr 484 . . . 4 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → (𝐼𝑋) < 0 )
284, 13, 14ogrpaddlt 31245 . . . 4 ((𝐺 ∈ oGrp ∧ ((𝐼𝑋) ∈ 𝐵0𝐵𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) < ( 0 (+g𝐺)𝑋))
2922, 25, 26, 24, 27, 28syl131anc 1381 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) < ( 0 (+g𝐺)𝑋))
304, 14, 5, 9grplinv 18543 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
3123, 24, 30syl2anc 583 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ((𝐼𝑋)(+g𝐺)𝑋) = 0 )
324, 14, 5grplid 18524 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 (+g𝐺)𝑋) = 𝑋)
3323, 24, 32syl2anc 583 . . 3 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → ( 0 (+g𝐺)𝑋) = 𝑋)
3429, 31, 333brtr3d 5101 . 2 (((𝐺 ∈ oGrp ∧ 𝑋𝐵) ∧ (𝐼𝑋) < 0 ) → 0 < 𝑋)
3521, 34impbida 797 1 ((𝐺 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ (𝐼𝑋) < 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  ltcplt 17941  Grpcgrp 18492  invgcminusg 18493  oGrpcogrp 31226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-plt 17963  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-omnd 31227  df-ogrp 31228
This theorem is referenced by:  archirngz  31345
  Copyright terms: Public domain W3C validator