Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirng Structured version   Visualization version   GIF version

Theorem archirng 33195
Description: Property of Archimedean ordered groups, framing positive 𝑌 between multiples of 𝑋. (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirng.6 (𝜑0 < 𝑌)
Assertion
Ref Expression
archirng (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirng
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
21breq2d 5155 . . 3 (𝑚 = 0 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (0 · 𝑋)))
3 oveq1 7438 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
43breq2d 5155 . . 3 (𝑚 = 𝑛 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (𝑛 · 𝑋)))
5 oveq1 7438 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
65breq2d 5155 . . 3 (𝑚 = (𝑛 + 1) → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 ((𝑛 + 1) · 𝑋)))
7 archirng.6 . . . . 5 (𝜑0 < 𝑌)
8 archirng.1 . . . . . . 7 (𝜑𝑊 ∈ oGrp)
9 isogrp 33079 . . . . . . . 8 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
109simprbi 496 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
11 omndtos 33082 . . . . . . 7 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
128, 10, 113syl 18 . . . . . 6 (𝜑𝑊 ∈ Toset)
13 ogrpgrp 33080 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
148, 13syl 17 . . . . . . 7 (𝜑𝑊 ∈ Grp)
15 archirng.b . . . . . . . 8 𝐵 = (Base‘𝑊)
16 archirng.0 . . . . . . . 8 0 = (0g𝑊)
1715, 16grpidcl 18983 . . . . . . 7 (𝑊 ∈ Grp → 0𝐵)
1814, 17syl 17 . . . . . 6 (𝜑0𝐵)
19 archirng.4 . . . . . 6 (𝜑𝑌𝐵)
20 archirng.l . . . . . . 7 = (le‘𝑊)
21 archirng.i . . . . . . 7 < = (lt‘𝑊)
2215, 20, 21tltnle 18467 . . . . . 6 ((𝑊 ∈ Toset ∧ 0𝐵𝑌𝐵) → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
2312, 18, 19, 22syl3anc 1373 . . . . 5 (𝜑 → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
247, 23mpbid 232 . . . 4 (𝜑 → ¬ 𝑌 0 )
25 archirng.3 . . . . . 6 (𝜑𝑋𝐵)
26 archirng.x . . . . . . 7 · = (.g𝑊)
2715, 16, 26mulg0 19092 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2825, 27syl 17 . . . . 5 (𝜑 → (0 · 𝑋) = 0 )
2928breq2d 5155 . . . 4 (𝜑 → (𝑌 (0 · 𝑋) ↔ 𝑌 0 ))
3024, 29mtbird 325 . . 3 (𝜑 → ¬ 𝑌 (0 · 𝑋))
3125, 19jca 511 . . . 4 (𝜑 → (𝑋𝐵𝑌𝐵))
32 omndmnd 33081 . . . . . 6 (𝑊 ∈ oMnd → 𝑊 ∈ Mnd)
338, 10, 323syl 18 . . . . 5 (𝜑𝑊 ∈ Mnd)
34 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
3515, 16, 26, 20, 21isarchi2 33192 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥))))
3635biimpa 476 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑊 ∈ Archi) → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
3712, 33, 34, 36syl21anc 838 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
38 archirng.5 . . . 4 (𝜑0 < 𝑋)
39 breq2 5147 . . . . . 6 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
40 oveq2 7439 . . . . . . . 8 (𝑥 = 𝑋 → (𝑚 · 𝑥) = (𝑚 · 𝑋))
4140breq2d 5155 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 (𝑚 · 𝑥) ↔ 𝑦 (𝑚 · 𝑋)))
4241rexbidv 3179 . . . . . 6 (𝑥 = 𝑋 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥) ↔ ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)))
4339, 42imbi12d 344 . . . . 5 (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋))))
44 breq1 5146 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 (𝑚 · 𝑋) ↔ 𝑌 (𝑚 · 𝑋)))
4544rexbidv 3179 . . . . . 6 (𝑦 = 𝑌 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋) ↔ ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋)))
4645imbi2d 340 . . . . 5 (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4743, 46rspc2v 3633 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) → ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4831, 37, 38, 47syl3c 66 . . 3 (𝜑 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))
492, 4, 6, 30, 48nn0min 32822 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋)))
5012adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Toset)
5114adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Grp)
52 simpr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5352nn0zd 12639 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
5425adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5515, 26mulgcl 19109 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
5651, 53, 54, 55syl3anc 1373 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
5719adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑌𝐵)
5815, 20, 21tltnle 18467 . . . . 5 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
5950, 56, 57, 58syl3anc 1373 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
6059anbi1d 631 . . 3 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (¬ 𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6160rexbidva 3177 . 2 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6249, 61mpbird 257 1 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cn 12266  0cn0 12526  cz 12613  Basecbs 17247  lecple 17304  0gc0g 17484  ltcplt 18354  Tosetctos 18461  Mndcmnd 18747  Grpcgrp 18951  .gcmg 19085  oMndcomnd 33074  oGrpcogrp 33075  Archicarchi 33184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-0g 17486  df-proset 18340  df-poset 18359  df-plt 18375  df-toset 18462  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-mulg 19086  df-omnd 33076  df-ogrp 33077  df-inftm 33185  df-archi 33186
This theorem is referenced by:  archirngz  33196  archiabllem1a  33198
  Copyright terms: Public domain W3C validator