Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirng Structured version   Visualization version   GIF version

Theorem archirng 33115
Description: Property of Archimedean ordered groups, framing positive 𝑌 between multiples of 𝑋. (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirng.6 (𝜑0 < 𝑌)
Assertion
Ref Expression
archirng (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirng
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
21breq2d 5114 . . 3 (𝑚 = 0 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (0 · 𝑋)))
3 oveq1 7376 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
43breq2d 5114 . . 3 (𝑚 = 𝑛 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (𝑛 · 𝑋)))
5 oveq1 7376 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
65breq2d 5114 . . 3 (𝑚 = (𝑛 + 1) → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 ((𝑛 + 1) · 𝑋)))
7 archirng.6 . . . . 5 (𝜑0 < 𝑌)
8 archirng.1 . . . . . . 7 (𝜑𝑊 ∈ oGrp)
9 isogrp 32989 . . . . . . . 8 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
109simprbi 496 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
11 omndtos 32992 . . . . . . 7 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
128, 10, 113syl 18 . . . . . 6 (𝜑𝑊 ∈ Toset)
13 ogrpgrp 32990 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
148, 13syl 17 . . . . . . 7 (𝜑𝑊 ∈ Grp)
15 archirng.b . . . . . . . 8 𝐵 = (Base‘𝑊)
16 archirng.0 . . . . . . . 8 0 = (0g𝑊)
1715, 16grpidcl 18873 . . . . . . 7 (𝑊 ∈ Grp → 0𝐵)
1814, 17syl 17 . . . . . 6 (𝜑0𝐵)
19 archirng.4 . . . . . 6 (𝜑𝑌𝐵)
20 archirng.l . . . . . . 7 = (le‘𝑊)
21 archirng.i . . . . . . 7 < = (lt‘𝑊)
2215, 20, 21tltnle 18357 . . . . . 6 ((𝑊 ∈ Toset ∧ 0𝐵𝑌𝐵) → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
2312, 18, 19, 22syl3anc 1373 . . . . 5 (𝜑 → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
247, 23mpbid 232 . . . 4 (𝜑 → ¬ 𝑌 0 )
25 archirng.3 . . . . . 6 (𝜑𝑋𝐵)
26 archirng.x . . . . . . 7 · = (.g𝑊)
2715, 16, 26mulg0 18982 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2825, 27syl 17 . . . . 5 (𝜑 → (0 · 𝑋) = 0 )
2928breq2d 5114 . . . 4 (𝜑 → (𝑌 (0 · 𝑋) ↔ 𝑌 0 ))
3024, 29mtbird 325 . . 3 (𝜑 → ¬ 𝑌 (0 · 𝑋))
3125, 19jca 511 . . . 4 (𝜑 → (𝑋𝐵𝑌𝐵))
32 omndmnd 32991 . . . . . 6 (𝑊 ∈ oMnd → 𝑊 ∈ Mnd)
338, 10, 323syl 18 . . . . 5 (𝜑𝑊 ∈ Mnd)
34 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
3515, 16, 26, 20, 21isarchi2 33112 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥))))
3635biimpa 476 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑊 ∈ Archi) → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
3712, 33, 34, 36syl21anc 837 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
38 archirng.5 . . . 4 (𝜑0 < 𝑋)
39 breq2 5106 . . . . . 6 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
40 oveq2 7377 . . . . . . . 8 (𝑥 = 𝑋 → (𝑚 · 𝑥) = (𝑚 · 𝑋))
4140breq2d 5114 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 (𝑚 · 𝑥) ↔ 𝑦 (𝑚 · 𝑋)))
4241rexbidv 3157 . . . . . 6 (𝑥 = 𝑋 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥) ↔ ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)))
4339, 42imbi12d 344 . . . . 5 (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋))))
44 breq1 5105 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 (𝑚 · 𝑋) ↔ 𝑌 (𝑚 · 𝑋)))
4544rexbidv 3157 . . . . . 6 (𝑦 = 𝑌 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋) ↔ ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋)))
4645imbi2d 340 . . . . 5 (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4743, 46rspc2v 3596 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) → ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4831, 37, 38, 47syl3c 66 . . 3 (𝜑 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))
492, 4, 6, 30, 48nn0min 32718 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋)))
5012adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Toset)
5114adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Grp)
52 simpr 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5352nn0zd 12531 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
5425adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5515, 26mulgcl 18999 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
5651, 53, 54, 55syl3anc 1373 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
5719adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑌𝐵)
5815, 20, 21tltnle 18357 . . . . 5 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
5950, 56, 57, 58syl3anc 1373 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
6059anbi1d 631 . . 3 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (¬ 𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6160rexbidva 3155 . 2 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6249, 61mpbird 257 1 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047  cn 12162  0cn0 12418  cz 12505  Basecbs 17155  lecple 17203  0gc0g 17378  ltcplt 18245  Tosetctos 18351  Mndcmnd 18637  Grpcgrp 18841  .gcmg 18975  oMndcomnd 32984  oGrpcogrp 32985  Archicarchi 33104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-0g 17380  df-proset 18231  df-poset 18250  df-plt 18265  df-toset 18352  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-mulg 18976  df-omnd 32986  df-ogrp 32987  df-inftm 33105  df-archi 33106
This theorem is referenced by:  archirngz  33116  archiabllem1a  33118
  Copyright terms: Public domain W3C validator