Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirng Structured version   Visualization version   GIF version

Theorem archirng 31442
Description: Property of Archimedean ordered groups, framing positive 𝑌 between multiples of 𝑋. (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirng.6 (𝜑0 < 𝑌)
Assertion
Ref Expression
archirng (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirng
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
21breq2d 5086 . . 3 (𝑚 = 0 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (0 · 𝑋)))
3 oveq1 7282 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
43breq2d 5086 . . 3 (𝑚 = 𝑛 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (𝑛 · 𝑋)))
5 oveq1 7282 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
65breq2d 5086 . . 3 (𝑚 = (𝑛 + 1) → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 ((𝑛 + 1) · 𝑋)))
7 archirng.6 . . . . 5 (𝜑0 < 𝑌)
8 archirng.1 . . . . . . 7 (𝜑𝑊 ∈ oGrp)
9 isogrp 31328 . . . . . . . 8 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
109simprbi 497 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
11 omndtos 31331 . . . . . . 7 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
128, 10, 113syl 18 . . . . . 6 (𝜑𝑊 ∈ Toset)
13 ogrpgrp 31329 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
148, 13syl 17 . . . . . . 7 (𝜑𝑊 ∈ Grp)
15 archirng.b . . . . . . . 8 𝐵 = (Base‘𝑊)
16 archirng.0 . . . . . . . 8 0 = (0g𝑊)
1715, 16grpidcl 18607 . . . . . . 7 (𝑊 ∈ Grp → 0𝐵)
1814, 17syl 17 . . . . . 6 (𝜑0𝐵)
19 archirng.4 . . . . . 6 (𝜑𝑌𝐵)
20 archirng.l . . . . . . 7 = (le‘𝑊)
21 archirng.i . . . . . . 7 < = (lt‘𝑊)
2215, 20, 21tltnle 18140 . . . . . 6 ((𝑊 ∈ Toset ∧ 0𝐵𝑌𝐵) → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
2312, 18, 19, 22syl3anc 1370 . . . . 5 (𝜑 → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
247, 23mpbid 231 . . . 4 (𝜑 → ¬ 𝑌 0 )
25 archirng.3 . . . . . 6 (𝜑𝑋𝐵)
26 archirng.x . . . . . . 7 · = (.g𝑊)
2715, 16, 26mulg0 18707 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2825, 27syl 17 . . . . 5 (𝜑 → (0 · 𝑋) = 0 )
2928breq2d 5086 . . . 4 (𝜑 → (𝑌 (0 · 𝑋) ↔ 𝑌 0 ))
3024, 29mtbird 325 . . 3 (𝜑 → ¬ 𝑌 (0 · 𝑋))
3125, 19jca 512 . . . 4 (𝜑 → (𝑋𝐵𝑌𝐵))
32 omndmnd 31330 . . . . . 6 (𝑊 ∈ oMnd → 𝑊 ∈ Mnd)
338, 10, 323syl 18 . . . . 5 (𝜑𝑊 ∈ Mnd)
34 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
3515, 16, 26, 20, 21isarchi2 31439 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥))))
3635biimpa 477 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑊 ∈ Archi) → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
3712, 33, 34, 36syl21anc 835 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
38 archirng.5 . . . 4 (𝜑0 < 𝑋)
39 breq2 5078 . . . . . 6 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
40 oveq2 7283 . . . . . . . 8 (𝑥 = 𝑋 → (𝑚 · 𝑥) = (𝑚 · 𝑋))
4140breq2d 5086 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 (𝑚 · 𝑥) ↔ 𝑦 (𝑚 · 𝑋)))
4241rexbidv 3226 . . . . . 6 (𝑥 = 𝑋 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥) ↔ ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)))
4339, 42imbi12d 345 . . . . 5 (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋))))
44 breq1 5077 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 (𝑚 · 𝑋) ↔ 𝑌 (𝑚 · 𝑋)))
4544rexbidv 3226 . . . . . 6 (𝑦 = 𝑌 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋) ↔ ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋)))
4645imbi2d 341 . . . . 5 (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4743, 46rspc2v 3570 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) → ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4831, 37, 38, 47syl3c 66 . . 3 (𝜑 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))
492, 4, 6, 30, 48nn0min 31134 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋)))
5012adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Toset)
5114adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Grp)
52 simpr 485 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5352nn0zd 12424 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
5425adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5515, 26mulgcl 18721 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
5651, 53, 54, 55syl3anc 1370 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
5719adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑌𝐵)
5815, 20, 21tltnle 18140 . . . . 5 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
5950, 56, 57, 58syl3anc 1370 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
6059anbi1d 630 . . 3 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (¬ 𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6160rexbidva 3225 . 2 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6249, 61mpbird 256 1 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cn 11973  0cn0 12233  cz 12319  Basecbs 16912  lecple 16969  0gc0g 17150  ltcplt 18026  Tosetctos 18134  Mndcmnd 18385  Grpcgrp 18577  .gcmg 18700  oMndcomnd 31323  oGrpcogrp 31324  Archicarchi 31431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-toset 18135  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mulg 18701  df-omnd 31325  df-ogrp 31326  df-inftm 31432  df-archi 31433
This theorem is referenced by:  archirngz  31443  archiabllem1a  31445
  Copyright terms: Public domain W3C validator