Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . 4
⊢ (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋)) |
2 | 1 | breq2d 5082 |
. . 3
⊢ (𝑚 = 0 → (𝑌 ≤ (𝑚 · 𝑋) ↔ 𝑌 ≤ (0 · 𝑋))) |
3 | | oveq1 7262 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋)) |
4 | 3 | breq2d 5082 |
. . 3
⊢ (𝑚 = 𝑛 → (𝑌 ≤ (𝑚 · 𝑋) ↔ 𝑌 ≤ (𝑛 · 𝑋))) |
5 | | oveq1 7262 |
. . . 4
⊢ (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋)) |
6 | 5 | breq2d 5082 |
. . 3
⊢ (𝑚 = (𝑛 + 1) → (𝑌 ≤ (𝑚 · 𝑋) ↔ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
7 | | archirng.6 |
. . . . 5
⊢ (𝜑 → 0 < 𝑌) |
8 | | archirng.1 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ oGrp) |
9 | | isogrp 31230 |
. . . . . . . 8
⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) |
10 | 9 | simprbi 496 |
. . . . . . 7
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
11 | | omndtos 31233 |
. . . . . . 7
⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) |
12 | 8, 10, 11 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ Toset) |
13 | | ogrpgrp 31231 |
. . . . . . . 8
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) |
14 | 8, 13 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Grp) |
15 | | archirng.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑊) |
16 | | archirng.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑊) |
17 | 15, 16 | grpidcl 18522 |
. . . . . . 7
⊢ (𝑊 ∈ Grp → 0 ∈ 𝐵) |
18 | 14, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈ 𝐵) |
19 | | archirng.4 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
20 | | archirng.l |
. . . . . . 7
⊢ ≤ =
(le‘𝑊) |
21 | | archirng.i |
. . . . . . 7
⊢ < =
(lt‘𝑊) |
22 | 15, 20, 21 | tltnle 18055 |
. . . . . 6
⊢ ((𝑊 ∈ Toset ∧ 0 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 0 < 𝑌 ↔ ¬ 𝑌 ≤ 0 )) |
23 | 12, 18, 19, 22 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → ( 0 < 𝑌 ↔ ¬ 𝑌 ≤ 0 )) |
24 | 7, 23 | mpbid 231 |
. . . 4
⊢ (𝜑 → ¬ 𝑌 ≤ 0 ) |
25 | | archirng.3 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
26 | | archirng.x |
. . . . . . 7
⊢ · =
(.g‘𝑊) |
27 | 15, 16, 26 | mulg0 18622 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
28 | 25, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 · 𝑋) = 0 ) |
29 | 28 | breq2d 5082 |
. . . 4
⊢ (𝜑 → (𝑌 ≤ (0 · 𝑋) ↔ 𝑌 ≤ 0 )) |
30 | 24, 29 | mtbird 324 |
. . 3
⊢ (𝜑 → ¬ 𝑌 ≤ (0 · 𝑋)) |
31 | 25, 19 | jca 511 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
32 | | omndmnd 31232 |
. . . . . 6
⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Mnd) |
33 | 8, 10, 32 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ Mnd) |
34 | | archirng.2 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ Archi) |
35 | 15, 16, 26, 20, 21 | isarchi2 31341 |
. . . . . 6
⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑥)))) |
36 | 35 | biimpa 476 |
. . . . 5
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑊 ∈ Archi) →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑥))) |
37 | 12, 33, 34, 36 | syl21anc 834 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑥))) |
38 | | archirng.5 |
. . . 4
⊢ (𝜑 → 0 < 𝑋) |
39 | | breq2 5074 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋)) |
40 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑚 · 𝑥) = (𝑚 · 𝑋)) |
41 | 40 | breq2d 5082 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑦 ≤ (𝑚 · 𝑥) ↔ 𝑦 ≤ (𝑚 · 𝑋))) |
42 | 41 | rexbidv 3225 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑥) ↔ ∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑋))) |
43 | 39, 42 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑋)))) |
44 | | breq1 5073 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → (𝑦 ≤ (𝑚 · 𝑋) ↔ 𝑌 ≤ (𝑚 · 𝑋))) |
45 | 44 | rexbidv 3225 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑋) ↔ ∃𝑚 ∈ ℕ 𝑌 ≤ (𝑚 · 𝑋))) |
46 | 45 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 ≤ (𝑚 · 𝑋)))) |
47 | 43, 46 | rspc2v 3562 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 ≤ (𝑚 · 𝑥)) → ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 ≤ (𝑚 · 𝑋)))) |
48 | 31, 37, 38, 47 | syl3c 66 |
. . 3
⊢ (𝜑 → ∃𝑚 ∈ ℕ 𝑌 ≤ (𝑚 · 𝑋)) |
49 | 2, 4, 6, 30, 48 | nn0min 31036 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (¬ 𝑌 ≤ (𝑛 · 𝑋) ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
50 | 12 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑊 ∈ Toset) |
51 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑊 ∈ Grp) |
52 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
53 | 52 | nn0zd 12353 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℤ) |
54 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
55 | 15, 26 | mulgcl 18636 |
. . . . . 6
⊢ ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑛 · 𝑋) ∈ 𝐵) |
56 | 51, 53, 54, 55 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵) |
57 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑌 ∈ 𝐵) |
58 | 15, 20, 21 | tltnle 18055 |
. . . . 5
⊢ ((𝑊 ∈ Toset ∧ (𝑛 · 𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 ≤ (𝑛 · 𝑋))) |
59 | 50, 56, 57, 58 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 ≤ (𝑛 · 𝑋))) |
60 | 59 | anbi1d 629 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)) ↔ (¬ 𝑌 ≤ (𝑛 · 𝑋) ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)))) |
61 | 60 | rexbidva 3224 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)) ↔ ∃𝑛 ∈ ℕ0 (¬ 𝑌 ≤ (𝑛 · 𝑋) ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)))) |
62 | 49, 61 | mpbird 256 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |