Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirngz Structured version   Visualization version   GIF version

Theorem archirngz 30414
Description: Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirngz.1 (𝜑 → (oppg𝑊) ∈ oGrp)
Assertion
Ref Expression
archirngz (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirngz
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 neg1z 11856 . . 3 -1 ∈ ℤ
2 archirng.1 . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
3 ogrpgrp 30334 . . . . . . . . . 10 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
42, 3syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
5 1zzd 11851 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
6 archirng.3 . . . . . . . . 9 (𝜑𝑋𝐵)
7 archirng.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
8 archirng.x . . . . . . . . . 10 · = (.g𝑊)
9 eqid 2793 . . . . . . . . . 10 (invg𝑊) = (invg𝑊)
107, 8, 9mulgneg 17989 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 1 ∈ ℤ ∧ 𝑋𝐵) → (-1 · 𝑋) = ((invg𝑊)‘(1 · 𝑋)))
114, 5, 6, 10syl3anc 1362 . . . . . . . 8 (𝜑 → (-1 · 𝑋) = ((invg𝑊)‘(1 · 𝑋)))
127, 8mulg1 17978 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
136, 12syl 17 . . . . . . . . 9 (𝜑 → (1 · 𝑋) = 𝑋)
1413fveq2d 6534 . . . . . . . 8 (𝜑 → ((invg𝑊)‘(1 · 𝑋)) = ((invg𝑊)‘𝑋))
1511, 14eqtrd 2829 . . . . . . 7 (𝜑 → (-1 · 𝑋) = ((invg𝑊)‘𝑋))
16 archirng.5 . . . . . . . 8 (𝜑0 < 𝑋)
17 archirng.i . . . . . . . . . 10 < = (lt‘𝑊)
18 archirng.0 . . . . . . . . . 10 0 = (0g𝑊)
197, 17, 9, 18ogrpinv0lt 30353 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ((invg𝑊)‘𝑋) < 0 ))
2019biimpa 477 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ((invg𝑊)‘𝑋) < 0 )
212, 6, 16, 20syl21anc 834 . . . . . . 7 (𝜑 → ((invg𝑊)‘𝑋) < 0 )
2215, 21eqbrtrd 4978 . . . . . 6 (𝜑 → (-1 · 𝑋) < 0 )
2322adantr 481 . . . . 5 ((𝜑𝑌 = 0 ) → (-1 · 𝑋) < 0 )
24 simpr 485 . . . . 5 ((𝜑𝑌 = 0 ) → 𝑌 = 0 )
2523, 24breqtrrd 4984 . . . 4 ((𝜑𝑌 = 0 ) → (-1 · 𝑋) < 𝑌)
26 isogrp 30333 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2726simprbi 497 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
28 omndtos 30336 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
292, 27, 283syl 18 . . . . . . . 8 (𝜑𝑊 ∈ Toset)
30 tospos 30289 . . . . . . . 8 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
3129, 30syl 17 . . . . . . 7 (𝜑𝑊 ∈ Poset)
327, 18grpidcl 17877 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
332, 3, 323syl 18 . . . . . . 7 (𝜑0𝐵)
34 archirng.l . . . . . . . 8 = (le‘𝑊)
357, 34posref 17378 . . . . . . 7 ((𝑊 ∈ Poset ∧ 0𝐵) → 0 0 )
3631, 33, 35syl2anc 584 . . . . . 6 (𝜑0 0 )
3736adantr 481 . . . . 5 ((𝜑𝑌 = 0 ) → 0 0 )
38 1m1e0 11546 . . . . . . . . . 10 (1 − 1) = 0
3938negeqi 10715 . . . . . . . . 9 -(1 − 1) = -0
40 ax-1cn 10430 . . . . . . . . . 10 1 ∈ ℂ
4140, 40negsubdii 10808 . . . . . . . . 9 -(1 − 1) = (-1 + 1)
42 neg0 10769 . . . . . . . . 9 -0 = 0
4339, 41, 423eqtr3i 2825 . . . . . . . 8 (-1 + 1) = 0
4443oveq1i 7017 . . . . . . 7 ((-1 + 1) · 𝑋) = (0 · 𝑋)
457, 18, 8mulg0 17976 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = 0 )
466, 45syl 17 . . . . . . 7 (𝜑 → (0 · 𝑋) = 0 )
4744, 46syl5eq 2841 . . . . . 6 (𝜑 → ((-1 + 1) · 𝑋) = 0 )
4847adantr 481 . . . . 5 ((𝜑𝑌 = 0 ) → ((-1 + 1) · 𝑋) = 0 )
4937, 24, 483brtr4d 4988 . . . 4 ((𝜑𝑌 = 0 ) → 𝑌 ((-1 + 1) · 𝑋))
5025, 49jca 512 . . 3 ((𝜑𝑌 = 0 ) → ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋)))
51 oveq1 7014 . . . . . 6 (𝑛 = -1 → (𝑛 · 𝑋) = (-1 · 𝑋))
5251breq1d 4966 . . . . 5 (𝑛 = -1 → ((𝑛 · 𝑋) < 𝑌 ↔ (-1 · 𝑋) < 𝑌))
53 oveq1 7014 . . . . . . 7 (𝑛 = -1 → (𝑛 + 1) = (-1 + 1))
5453oveq1d 7022 . . . . . 6 (𝑛 = -1 → ((𝑛 + 1) · 𝑋) = ((-1 + 1) · 𝑋))
5554breq2d 4968 . . . . 5 (𝑛 = -1 → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 ((-1 + 1) · 𝑋)))
5652, 55anbi12d 630 . . . 4 (𝑛 = -1 → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋))))
5756rspcev 3554 . . 3 ((-1 ∈ ℤ ∧ ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
581, 50, 57sylancr 587 . 2 ((𝜑𝑌 = 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
59 simpr 485 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
6059nn0zd 11923 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
6160ad2antrr 722 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑚 ∈ ℤ)
6261znegcld 11927 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → -𝑚 ∈ ℤ)
63 2z 11852 . . . . . . 7 2 ∈ ℤ
6463a1i 11 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 2 ∈ ℤ)
6562, 64zsubcld 11930 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-𝑚 − 2) ∈ ℤ)
66 nn0cn 11744 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
6766adantl 482 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
68 2cnd 11552 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℂ)
6967, 68negdi2d 10848 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 2) = (-𝑚 − 2))
7069oveq1d 7022 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((-𝑚 − 2) · 𝑋))
712ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ oGrp)
72 archirngz.1 . . . . . . . . . . . 12 (𝜑 → (oppg𝑊) ∈ oGrp)
7372ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (oppg𝑊) ∈ oGrp)
7471, 73jca 512 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
754ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Grp)
7660peano2zd 11928 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℤ)
776ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑋𝐵)
787, 8mulgcl 17988 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
7975, 76, 77, 78syl3anc 1362 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
8063a1i 11 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
8160, 80zaddcld 11929 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈ ℤ)
827, 8mulgcl 17988 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋𝐵) → ((𝑚 + 2) · 𝑋) ∈ 𝐵)
8375, 81, 77, 82syl3anc 1362 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) ∈ 𝐵)
8475, 32syl 17 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0𝐵)
8516ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0 < 𝑋)
86 eqid 2793 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
877, 17, 86ogrpaddlt 30348 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑋𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
8871, 84, 77, 79, 85, 87syl131anc 1374 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
897, 86, 18grplid 17879 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋))
9075, 79, 89syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋))
91 1cnd 10471 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
9266, 91, 91addassd 10498 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (𝑚 + (1 + 1)))
93 1p1e2 11599 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
9493oveq2i 7018 . . . . . . . . . . . . . . . 16 (𝑚 + (1 + 1)) = (𝑚 + 2)
9592, 94syl6eq 2845 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (𝑚 + 2))
9666, 91addcld 10495 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℂ)
9796, 91addcomd 10678 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (1 + (𝑚 + 1)))
9895, 97eqtr3d 2831 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 + 2) = (1 + (𝑚 + 1)))
9998oveq1d 7022 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋))
10099adantl 482 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋))
101 1zzd 11851 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
1027, 8, 86mulgdir 18001 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵)) → ((1 + (𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)))
10375, 101, 76, 77, 102syl13anc 1363 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 + (𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)))
10477, 12syl 17 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
105104oveq1d 7022 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)) = (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
106100, 103, 1053eqtrrd 2834 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 2) · 𝑋))
10788, 90, 1063brtr3d 4987 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋))
1087, 17, 9ogrpinvlt 30354 . . . . . . . . . . 11 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋) ↔ ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋))))
109108biimpa 477 . . . . . . . . . 10 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) ∧ ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋)) → ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11074, 79, 83, 107, 109syl31anc 1364 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
1117, 8, 9mulgneg 17989 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑚 + 2) · 𝑋) = ((invg𝑊)‘((𝑚 + 2) · 𝑋)))
11275, 81, 77, 111syl3anc 1362 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((invg𝑊)‘((𝑚 + 2) · 𝑋)))
1137, 8, 9mulgneg 17989 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11475, 76, 77, 113syl3anc 1362 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
115110, 112, 1143brtr4d 4988 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
11670, 115eqbrtrrd 4980 . . . . . . 7 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
117116ad2antrr 722 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
118114ad2antrr 722 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11931ad4antr 728 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑊 ∈ Poset)
120 archirng.4 . . . . . . . . . . . 12 (𝜑𝑌𝐵)
1217, 9grpinvcl 17896 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑊)‘𝑌) ∈ 𝐵)
1224, 120, 121syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((invg𝑊)‘𝑌) ∈ 𝐵)
123122ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((invg𝑊)‘𝑌) ∈ 𝐵)
124123ad2antrr 722 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) ∈ 𝐵)
12579ad2antrr 722 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
126 simplrr 774 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))
127 simpr 485 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌))
1287, 34posasymb 17379 . . . . . . . . . 10 ((𝑊 ∈ Poset ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ((((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) ↔ ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋)))
129128biimpa 477 . . . . . . . . 9 (((𝑊 ∈ Poset ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ (((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌))) → ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))
130119, 124, 125, 126, 127, 129syl32anc 1369 . . . . . . . 8 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))
131130fveq2d 6534 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
1327, 9grpinvinv 17911 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
1334, 120, 132syl2anc 584 . . . . . . . 8 (𝜑 → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
134133ad4antr 728 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
135118, 131, 1343eqtr2rd 2836 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑌 = (-(𝑚 + 1) · 𝑋))
136117, 135breqtrrd 4984 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < 𝑌)
137 1cnd 10471 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
13867, 68, 137addsubassd 10854 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) − 1) = (𝑚 + (2 − 1)))
139 2m1e1 11600 . . . . . . . . . . . . 13 (2 − 1) = 1
140139oveq2i 7018 . . . . . . . . . . . 12 (𝑚 + (2 − 1)) = (𝑚 + 1)
141138, 140syl6req 2846 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) = ((𝑚 + 2) − 1))
142141negeqd 10716 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 1) = -((𝑚 + 2) − 1))
14367, 68addcld 10495 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈ ℂ)
144143, 137negsubdid 10849 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -((𝑚 + 2) − 1) = (-(𝑚 + 2) + 1))
14569oveq1d 7022 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) + 1) = ((-𝑚 − 2) + 1))
146142, 144, 1453eqtrrd 2834 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) = -(𝑚 + 1))
147146oveq1d 7022 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) = (-(𝑚 + 1) · 𝑋))
14829ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Toset)
149148, 30syl 17 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Poset)
15060znegcld 11927 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -𝑚 ∈ ℤ)
151150, 80zsubcld 11930 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 − 2) ∈ ℤ)
152151peano2zd 11928 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) ∈ ℤ)
1537, 8mulgcl 17988 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((-𝑚 − 2) + 1) ∈ ℤ ∧ 𝑋𝐵) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵)
15475, 152, 77, 153syl3anc 1362 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵)
1557, 34posref 17378 . . . . . . . . 9 ((𝑊 ∈ Poset ∧ (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵) → (((-𝑚 − 2) + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
156149, 154, 155syl2anc 584 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
157147, 156eqbrtrrd 4980 . . . . . . 7 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
158157ad2antrr 722 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
159135, 158eqbrtrd 4978 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑌 (((-𝑚 − 2) + 1) · 𝑋))
160 oveq1 7014 . . . . . . . 8 (𝑛 = (-𝑚 − 2) → (𝑛 · 𝑋) = ((-𝑚 − 2) · 𝑋))
161160breq1d 4966 . . . . . . 7 (𝑛 = (-𝑚 − 2) → ((𝑛 · 𝑋) < 𝑌 ↔ ((-𝑚 − 2) · 𝑋) < 𝑌))
162 oveq1 7014 . . . . . . . . 9 (𝑛 = (-𝑚 − 2) → (𝑛 + 1) = ((-𝑚 − 2) + 1))
163162oveq1d 7022 . . . . . . . 8 (𝑛 = (-𝑚 − 2) → ((𝑛 + 1) · 𝑋) = (((-𝑚 − 2) + 1) · 𝑋))
164163breq2d 4968 . . . . . . 7 (𝑛 = (-𝑚 − 2) → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 (((-𝑚 − 2) + 1) · 𝑋)))
165161, 164anbi12d 630 . . . . . 6 (𝑛 = (-𝑚 − 2) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (((-𝑚 − 2) · 𝑋) < 𝑌𝑌 (((-𝑚 − 2) + 1) · 𝑋))))
166165rspcev 3554 . . . . 5 (((-𝑚 − 2) ∈ ℤ ∧ (((-𝑚 − 2) · 𝑋) < 𝑌𝑌 (((-𝑚 − 2) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
16765, 136, 159, 166syl12anc 833 . . . 4 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
16876ad2antrr 722 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑚 + 1) ∈ ℤ)
169168znegcld 11927 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → -(𝑚 + 1) ∈ ℤ)
1702ad2antrr 722 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → 𝑊 ∈ oGrp)
17172ad2antrr 722 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (oppg𝑊) ∈ oGrp)
172170, 171jca 512 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
1731723anassrs 1351 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
174123ad2antrr 722 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘𝑌) ∈ 𝐵)
17579ad2antrr 722 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
176 simpr 485 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))
1777, 17, 9ogrpinvlt 30354 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → (((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋) ↔ ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌))))
178177biimpa 477 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌)))
179173, 174, 175, 176, 178syl31anc 1364 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌)))
180114ad2antrr 722 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
181180eqcomd 2799 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) = (-(𝑚 + 1) · 𝑋))
182133ad4antr 728 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
183179, 181, 1823brtr3d 4987 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) < 𝑌)
184 simp-4l 779 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝜑)
1857, 8mulgcl 17988 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
18675, 60, 77, 185syl3anc 1362 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵)
1877, 17, 9ogrpinvlt 30354 . . . . . . . . . . 11 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ (𝑚 · 𝑋) ∈ 𝐵 ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋))))
18874, 186, 123, 187syl3anc 1362 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋))))
189188biimpa 477 . . . . . . . . 9 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 · 𝑋) < ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
190189adantrr 713 . . . . . . . 8 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
191190adantr 481 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
192 negdi 10780 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑚 + 1) = (-𝑚 + -1))
19366, 40, 192sylancl 586 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → -(𝑚 + 1) = (-𝑚 + -1))
194193oveq1d 7022 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → (-(𝑚 + 1) + 1) = ((-𝑚 + -1) + 1))
19566negcld 10821 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → -𝑚 ∈ ℂ)
19691negcld 10821 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → -1 ∈ ℂ)
197195, 196, 91addassd 10498 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → ((-𝑚 + -1) + 1) = (-𝑚 + (-1 + 1)))
19843oveq2i 7018 . . . . . . . . . . . . . . 15 (-𝑚 + (-1 + 1)) = (-𝑚 + 0)
199198a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (-𝑚 + (-1 + 1)) = (-𝑚 + 0))
200195addid1d 10676 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (-𝑚 + 0) = -𝑚)
201197, 199, 2003eqtrd 2833 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → ((-𝑚 + -1) + 1) = -𝑚)
202194, 201eqtrd 2829 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (-(𝑚 + 1) + 1) = -𝑚)
203202oveq1d 7022 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋))
204203adantl 482 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋))
2057, 8, 9mulgneg 17989 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (-𝑚 · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
20675, 60, 77, 205syl3anc 1362 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
207204, 206eqtrd 2829 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
208207ad2antrr 722 . . . . . . . 8 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
209208eqcomd 2799 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘(𝑚 · 𝑋)) = ((-(𝑚 + 1) + 1) · 𝑋))
210191, 182, 2093brtr3d 4987 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 < ((-(𝑚 + 1) + 1) · 𝑋))
211 ovexd 7041 . . . . . . 7 (𝜑 → ((-(𝑚 + 1) + 1) · 𝑋) ∈ V)
21234, 17pltle 17388 . . . . . . 7 ((𝑊 ∈ oGrp ∧ 𝑌𝐵 ∧ ((-(𝑚 + 1) + 1) · 𝑋) ∈ V) → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
2132, 120, 211, 212syl3anc 1362 . . . . . 6 (𝜑 → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
214184, 210, 213sylc 65 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋))
215 oveq1 7014 . . . . . . . 8 (𝑛 = -(𝑚 + 1) → (𝑛 · 𝑋) = (-(𝑚 + 1) · 𝑋))
216215breq1d 4966 . . . . . . 7 (𝑛 = -(𝑚 + 1) → ((𝑛 · 𝑋) < 𝑌 ↔ (-(𝑚 + 1) · 𝑋) < 𝑌))
217 oveq1 7014 . . . . . . . . 9 (𝑛 = -(𝑚 + 1) → (𝑛 + 1) = (-(𝑚 + 1) + 1))
218217oveq1d 7022 . . . . . . . 8 (𝑛 = -(𝑚 + 1) → ((𝑛 + 1) · 𝑋) = ((-(𝑚 + 1) + 1) · 𝑋))
219218breq2d 4968 . . . . . . 7 (𝑛 = -(𝑚 + 1) → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
220216, 219anbi12d 630 . . . . . 6 (𝑛 = -(𝑚 + 1) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ((-(𝑚 + 1) · 𝑋) < 𝑌𝑌 ((-(𝑚 + 1) + 1) · 𝑋))))
221220rspcev 3554 . . . . 5 ((-(𝑚 + 1) ∈ ℤ ∧ ((-(𝑚 + 1) · 𝑋) < 𝑌𝑌 ((-(𝑚 + 1) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
222169, 183, 214, 221syl12anc 833 . . . 4 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2237, 34, 17tlt2 30295 . . . . . 6 ((𝑊 ∈ Toset ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
224148, 79, 123, 223syl3anc 1362 . . . . 5 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
225224adantr 481 . . . 4 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
226167, 222, 225mpjaodan 951 . . 3 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2272adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → 𝑊 ∈ oGrp)
228 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
229228adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → 𝑊 ∈ Archi)
2306adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → 𝑋𝐵)
231122adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → ((invg𝑊)‘𝑌) ∈ 𝐵)
23216adantr 481 . . . 4 ((𝜑𝑌 < 0 ) → 0 < 𝑋)
233133breq1d 4966 . . . . . 6 (𝜑 → (((invg𝑊)‘((invg𝑊)‘𝑌)) < 0𝑌 < 0 ))
234233biimpar 478 . . . . 5 ((𝜑𝑌 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 )
2357, 17, 9, 18ogrpinv0lt 30353 . . . . . . 7 ((𝑊 ∈ oGrp ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → ( 0 < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ))
2362, 122, 235syl2anc 584 . . . . . 6 (𝜑 → ( 0 < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ))
237236biimpar 478 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ) → 0 < ((invg𝑊)‘𝑌))
238234, 237syldan 591 . . . 4 ((𝜑𝑌 < 0 ) → 0 < ((invg𝑊)‘𝑌))
2397, 18, 17, 34, 8, 227, 229, 230, 231, 232, 238archirng 30413 . . 3 ((𝜑𝑌 < 0 ) → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)))
240226, 239r19.29a 3249 . 2 ((𝜑𝑌 < 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
241 nn0ssz 11841 . . 3 0 ⊆ ℤ
2422adantr 481 . . . 4 ((𝜑0 < 𝑌) → 𝑊 ∈ oGrp)
243228adantr 481 . . . 4 ((𝜑0 < 𝑌) → 𝑊 ∈ Archi)
2446adantr 481 . . . 4 ((𝜑0 < 𝑌) → 𝑋𝐵)
245120adantr 481 . . . 4 ((𝜑0 < 𝑌) → 𝑌𝐵)
24616adantr 481 . . . 4 ((𝜑0 < 𝑌) → 0 < 𝑋)
247 simpr 485 . . . 4 ((𝜑0 < 𝑌) → 0 < 𝑌)
2487, 18, 17, 34, 8, 242, 243, 244, 245, 246, 247archirng 30413 . . 3 ((𝜑0 < 𝑌) → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
249 ssrexv 3950 . . 3 (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋))))
250241, 248, 249mpsyl 68 . 2 ((𝜑0 < 𝑌) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2517, 17tlt3 30296 . . 3 ((𝑊 ∈ Toset ∧ 𝑌𝐵0𝐵) → (𝑌 = 0𝑌 < 00 < 𝑌))
25229, 120, 33, 251syl3anc 1362 . 2 (𝜑 → (𝑌 = 0𝑌 < 00 < 𝑌))
25358, 240, 250, 252mpjao3dan 1422 1 (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  w3o 1077  w3a 1078   = wceq 1520  wcel 2079  wrex 3104  Vcvv 3432  wss 3854   class class class wbr 4956  cfv 6217  (class class class)co 7007  cc 10370  0cc0 10372  1c1 10373   + caddc 10375  cmin 10706  -cneg 10707  2c2 11529  0cn0 11734  cz 11818  Basecbs 16300  +gcplusg 16382  lecple 16389  0gc0g 16530  Posetcpo 17367  ltcplt 17368  Tosetctos 17460  Grpcgrp 17849  invgcminusg 17850  .gcmg 17969  oppgcoppg 18202  oMndcomnd 30328  oGrpcogrp 30329  Archicarchi 30402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-tpos 7734  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-fz 12732  df-seq 13208  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-plusg 16395  df-ple 16402  df-0g 16532  df-proset 17355  df-poset 17373  df-plt 17385  df-toset 17461  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-grp 17852  df-minusg 17853  df-mulg 17970  df-oppg 18203  df-omnd 30330  df-ogrp 30331  df-inftm 30403  df-archi 30404
This theorem is referenced by:  archiabllem2c  30420
  Copyright terms: Public domain W3C validator