| Step | Hyp | Ref
| Expression |
| 1 | | neg1z 12636 |
. . 3
⊢ -1 ∈
ℤ |
| 2 | | archirng.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ oGrp) |
| 3 | | ogrpgrp 33019 |
. . . . . . . . . 10
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Grp) |
| 5 | | 1zzd 12631 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℤ) |
| 6 | | archirng.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 7 | | archirng.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑊) |
| 8 | | archirng.x |
. . . . . . . . . 10
⊢ · =
(.g‘𝑊) |
| 9 | | eqid 2734 |
. . . . . . . . . 10
⊢
(invg‘𝑊) = (invg‘𝑊) |
| 10 | 7, 8, 9 | mulgneg 19079 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧ 1 ∈
ℤ ∧ 𝑋 ∈
𝐵) → (-1 · 𝑋) =
((invg‘𝑊)‘(1 · 𝑋))) |
| 11 | 4, 5, 6, 10 | syl3anc 1372 |
. . . . . . . 8
⊢ (𝜑 → (-1 · 𝑋) = ((invg‘𝑊)‘(1 · 𝑋))) |
| 12 | 7, 8 | mulg1 19068 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| 13 | 6, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1 · 𝑋) = 𝑋) |
| 14 | 13 | fveq2d 6890 |
. . . . . . . 8
⊢ (𝜑 →
((invg‘𝑊)‘(1 · 𝑋)) = ((invg‘𝑊)‘𝑋)) |
| 15 | 11, 14 | eqtrd 2769 |
. . . . . . 7
⊢ (𝜑 → (-1 · 𝑋) = ((invg‘𝑊)‘𝑋)) |
| 16 | | archirng.5 |
. . . . . . . 8
⊢ (𝜑 → 0 < 𝑋) |
| 17 | | archirng.i |
. . . . . . . . . 10
⊢ < =
(lt‘𝑊) |
| 18 | | archirng.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑊) |
| 19 | 7, 17, 9, 18 | ogrpinv0lt 33038 |
. . . . . . . . 9
⊢ ((𝑊 ∈ oGrp ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ ((invg‘𝑊)‘𝑋) < 0 )) |
| 20 | 19 | biimpa 476 |
. . . . . . . 8
⊢ (((𝑊 ∈ oGrp ∧ 𝑋 ∈ 𝐵) ∧ 0 < 𝑋) → ((invg‘𝑊)‘𝑋) < 0 ) |
| 21 | 2, 6, 16, 20 | syl21anc 837 |
. . . . . . 7
⊢ (𝜑 →
((invg‘𝑊)‘𝑋) < 0 ) |
| 22 | 15, 21 | eqbrtrd 5145 |
. . . . . 6
⊢ (𝜑 → (-1 · 𝑋) < 0 ) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 0 ) → (-1 · 𝑋) < 0 ) |
| 24 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑌 = 0 ) |
| 25 | 23, 24 | breqtrrd 5151 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 0 ) → (-1 · 𝑋) < 𝑌) |
| 26 | | isogrp 33018 |
. . . . . . . . . 10
⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) |
| 27 | 26 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
| 28 | | omndtos 33021 |
. . . . . . . . 9
⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) |
| 29 | 2, 27, 28 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ Toset) |
| 30 | | tospos 18434 |
. . . . . . . 8
⊢ (𝑊 ∈ Toset → 𝑊 ∈ Poset) |
| 31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Poset) |
| 32 | 7, 18 | grpidcl 18952 |
. . . . . . . 8
⊢ (𝑊 ∈ Grp → 0 ∈ 𝐵) |
| 33 | 2, 3, 32 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ 𝐵) |
| 34 | | archirng.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝑊) |
| 35 | 7, 34 | posref 18334 |
. . . . . . 7
⊢ ((𝑊 ∈ Poset ∧ 0 ∈ 𝐵) → 0 ≤ 0 ) |
| 36 | 31, 33, 35 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 0 ≤ 0 ) |
| 37 | 36 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 0 ) → 0 ≤ 0
) |
| 38 | | 1m1e0 12320 |
. . . . . . . . . 10
⊢ (1
− 1) = 0 |
| 39 | 38 | negeqi 11483 |
. . . . . . . . 9
⊢ -(1
− 1) = -0 |
| 40 | | ax-1cn 11195 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 41 | 40, 40 | negsubdii 11576 |
. . . . . . . . 9
⊢ -(1
− 1) = (-1 + 1) |
| 42 | | neg0 11537 |
. . . . . . . . 9
⊢ -0 =
0 |
| 43 | 39, 41, 42 | 3eqtr3i 2765 |
. . . . . . . 8
⊢ (-1 + 1)
= 0 |
| 44 | 43 | oveq1i 7423 |
. . . . . . 7
⊢ ((-1 + 1)
·
𝑋) = (0 · 𝑋) |
| 45 | 7, 18, 8 | mulg0 19061 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| 46 | 6, 45 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0 · 𝑋) = 0 ) |
| 47 | 44, 46 | eqtrid 2781 |
. . . . . 6
⊢ (𝜑 → ((-1 + 1) · 𝑋) = 0 ) |
| 48 | 47 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 0 ) → ((-1 + 1) · 𝑋) = 0 ) |
| 49 | 37, 24, 48 | 3brtr4d 5155 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑌 ≤ ((-1 + 1) · 𝑋)) |
| 50 | 25, 49 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 0 ) → ((-1 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((-1 + 1) · 𝑋))) |
| 51 | | oveq1 7420 |
. . . . . 6
⊢ (𝑛 = -1 → (𝑛 · 𝑋) = (-1 · 𝑋)) |
| 52 | 51 | breq1d 5133 |
. . . . 5
⊢ (𝑛 = -1 → ((𝑛 · 𝑋) < 𝑌 ↔ (-1 · 𝑋) < 𝑌)) |
| 53 | | oveq1 7420 |
. . . . . . 7
⊢ (𝑛 = -1 → (𝑛 + 1) = (-1 + 1)) |
| 54 | 53 | oveq1d 7428 |
. . . . . 6
⊢ (𝑛 = -1 → ((𝑛 + 1) · 𝑋) = ((-1 + 1) · 𝑋)) |
| 55 | 54 | breq2d 5135 |
. . . . 5
⊢ (𝑛 = -1 → (𝑌 ≤ ((𝑛 + 1) · 𝑋) ↔ 𝑌 ≤ ((-1 + 1) · 𝑋))) |
| 56 | 52, 55 | anbi12d 632 |
. . . 4
⊢ (𝑛 = -1 → (((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)) ↔ ((-1 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((-1 + 1) · 𝑋)))) |
| 57 | 56 | rspcev 3605 |
. . 3
⊢ ((-1
∈ ℤ ∧ ((-1 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((-1 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 58 | 1, 50, 57 | sylancr 587 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 59 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
| 60 | 59 | nn0zd 12622 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℤ) |
| 61 | 60 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → 𝑚 ∈ ℤ) |
| 62 | 61 | znegcld 12707 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → -𝑚 ∈ ℤ) |
| 63 | | 2z 12632 |
. . . . . . 7
⊢ 2 ∈
ℤ |
| 64 | 63 | a1i 11 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → 2 ∈ ℤ) |
| 65 | 62, 64 | zsubcld 12710 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → (-𝑚 − 2) ∈ ℤ) |
| 66 | | nn0cn 12519 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
| 67 | 66 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℂ) |
| 68 | | 2cnd 12326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈
ℂ) |
| 69 | 67, 68 | negdi2d 11616 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 2) = (-𝑚 − 2)) |
| 70 | 69 | oveq1d 7428 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((-𝑚 − 2) · 𝑋)) |
| 71 | 2 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ oGrp) |
| 72 | | archirngz.1 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(oppg‘𝑊) ∈ oGrp) |
| 73 | 72 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) →
(oppg‘𝑊) ∈ oGrp) |
| 74 | 71, 73 | jca 511 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp)) |
| 75 | 4 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Grp) |
| 76 | 60 | peano2zd 12708 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈
ℤ) |
| 77 | 6 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
| 78 | 7, 8 | mulgcl 19078 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑚 + 1) · 𝑋) ∈ 𝐵) |
| 79 | 75, 76, 77, 78 | syl3anc 1372 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) ∈ 𝐵) |
| 80 | 63 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈
ℤ) |
| 81 | 60, 80 | zaddcld 12709 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈
ℤ) |
| 82 | 7, 8 | mulgcl 19078 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑚 + 2) · 𝑋) ∈ 𝐵) |
| 83 | 75, 81, 77, 82 | syl3anc 1372 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) ∈ 𝐵) |
| 84 | 75, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0 ∈ 𝐵) |
| 85 | 16 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0 < 𝑋) |
| 86 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 87 | 7, 17, 86 | ogrpaddlt 33033 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ oGrp ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ 0 < 𝑋) → ( 0 (+g‘𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g‘𝑊)((𝑚 + 1) · 𝑋))) |
| 88 | 71, 84, 77, 79, 85, 87 | syl131anc 1384 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0
(+g‘𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g‘𝑊)((𝑚 + 1) · 𝑋))) |
| 89 | 7, 86, 18 | grplid 18954 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Grp ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ( 0 (+g‘𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋)) |
| 90 | 75, 79, 89 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0
(+g‘𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋)) |
| 91 | | 1cnd 11238 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ 1 ∈ ℂ) |
| 92 | 66, 91, 91 | addassd 11265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) =
(𝑚 + (1 +
1))) |
| 93 | | 1p1e2 12373 |
. . . . . . . . . . . . . . . . 17
⊢ (1 + 1) =
2 |
| 94 | 93 | oveq2i 7424 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 + (1 + 1)) = (𝑚 + 2) |
| 95 | 92, 94 | eqtrdi 2785 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) =
(𝑚 + 2)) |
| 96 | 66, 91 | addcld 11262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℂ) |
| 97 | 96, 91 | addcomd 11445 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) = (1 +
(𝑚 + 1))) |
| 98 | 95, 97 | eqtr3d 2771 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 2) = (1 +
(𝑚 + 1))) |
| 99 | 98 | oveq1d 7428 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋)) |
| 100 | 99 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋)) |
| 101 | | 1zzd 12631 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈
ℤ) |
| 102 | 7, 8, 86 | mulgdir 19093 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Grp ∧ (1 ∈
ℤ ∧ (𝑚 + 1)
∈ ℤ ∧ 𝑋
∈ 𝐵)) → ((1 +
(𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g‘𝑊)((𝑚 + 1) · 𝑋))) |
| 103 | 75, 101, 76, 77, 102 | syl13anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 +
(𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g‘𝑊)((𝑚 + 1) · 𝑋))) |
| 104 | 77, 12 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (1 · 𝑋) = 𝑋) |
| 105 | 104 | oveq1d 7428 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 · 𝑋)(+g‘𝑊)((𝑚 + 1) · 𝑋)) = (𝑋(+g‘𝑊)((𝑚 + 1) · 𝑋))) |
| 106 | 100, 103,
105 | 3eqtrrd 2774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑋(+g‘𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 2) · 𝑋)) |
| 107 | 88, 90, 106 | 3brtr3d 5154 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋)) |
| 108 | 7, 17, 9 | ogrpinvlt 33039 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋) ↔ ((invg‘𝑊)‘((𝑚 + 2) · 𝑋)) <
((invg‘𝑊)‘((𝑚 + 1) · 𝑋)))) |
| 109 | 108 | biimpa 476 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) ∧ ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋)) → ((invg‘𝑊)‘((𝑚 + 2) · 𝑋)) <
((invg‘𝑊)‘((𝑚 + 1) · 𝑋))) |
| 110 | 74, 79, 83, 107, 109 | syl31anc 1374 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) →
((invg‘𝑊)‘((𝑚 + 2) · 𝑋)) <
((invg‘𝑊)‘((𝑚 + 1) · 𝑋))) |
| 111 | 7, 8, 9 | mulgneg 19079 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-(𝑚 + 2) · 𝑋) = ((invg‘𝑊)‘((𝑚 + 2) · 𝑋))) |
| 112 | 75, 81, 77, 111 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((invg‘𝑊)‘((𝑚 + 2) · 𝑋))) |
| 113 | 7, 8, 9 | mulgneg 19079 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-(𝑚 + 1) · 𝑋) = ((invg‘𝑊)‘((𝑚 + 1) · 𝑋))) |
| 114 | 75, 76, 77, 113 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) = ((invg‘𝑊)‘((𝑚 + 1) · 𝑋))) |
| 115 | 110, 112,
114 | 3brtr4d 5155 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) < (-(𝑚 + 1) · 𝑋)) |
| 116 | 70, 115 | eqbrtrrd 5147 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋)) |
| 117 | 116 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋)) |
| 118 | 114 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) = ((invg‘𝑊)‘((𝑚 + 1) · 𝑋))) |
| 119 | 31 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → 𝑊 ∈ Poset) |
| 120 | | archirng.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 121 | 7, 9 | grpinvcl 18974 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑊)‘𝑌) ∈ 𝐵) |
| 122 | 4, 120, 121 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 →
((invg‘𝑊)‘𝑌) ∈ 𝐵) |
| 123 | 122 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) →
((invg‘𝑊)‘𝑌) ∈ 𝐵) |
| 124 | 123 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((invg‘𝑊)‘𝑌) ∈ 𝐵) |
| 125 | 79 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵) |
| 126 | | simplrr 777 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋)) |
| 127 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) |
| 128 | 7, 34 | posasymb 18335 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Poset ∧
((invg‘𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ((((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) ↔ ((invg‘𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))) |
| 129 | 128 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Poset ∧
((invg‘𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ (((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌))) → ((invg‘𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋)) |
| 130 | 119, 124,
125, 126, 127, 129 | syl32anc 1379 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((invg‘𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋)) |
| 131 | 130 | fveq2d 6890 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) = ((invg‘𝑊)‘((𝑚 + 1) · 𝑋))) |
| 132 | 7, 9 | grpinvinv 18992 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) = 𝑌) |
| 133 | 4, 120, 132 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) = 𝑌) |
| 134 | 133 | ad4antr 732 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) = 𝑌) |
| 135 | 118, 131,
134 | 3eqtr2rd 2776 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → 𝑌 = (-(𝑚 + 1) · 𝑋)) |
| 136 | 117, 135 | breqtrrd 5151 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < 𝑌) |
| 137 | | 1cnd 11238 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈
ℂ) |
| 138 | 67, 68, 137 | addsubassd 11622 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) − 1) = (𝑚 + (2 −
1))) |
| 139 | | 2m1e1 12374 |
. . . . . . . . . . . . 13
⊢ (2
− 1) = 1 |
| 140 | 139 | oveq2i 7424 |
. . . . . . . . . . . 12
⊢ (𝑚 + (2 − 1)) = (𝑚 + 1) |
| 141 | 138, 140 | eqtr2di 2786 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) = ((𝑚 + 2) − 1)) |
| 142 | 141 | negeqd 11484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 1) = -((𝑚 + 2) − 1)) |
| 143 | 67, 68 | addcld 11262 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈
ℂ) |
| 144 | 143, 137 | negsubdid 11617 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -((𝑚 + 2) − 1) = (-(𝑚 + 2) + 1)) |
| 145 | 69 | oveq1d 7428 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) + 1) = ((-𝑚 − 2) +
1)) |
| 146 | 142, 144,
145 | 3eqtrrd 2774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) = -(𝑚 + 1)) |
| 147 | 146 | oveq1d 7428 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) = (-(𝑚 + 1) · 𝑋)) |
| 148 | 29 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Toset) |
| 149 | 148, 30 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Poset) |
| 150 | 60 | znegcld 12707 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -𝑚 ∈
ℤ) |
| 151 | 150, 80 | zsubcld 12710 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 − 2) ∈
ℤ) |
| 152 | 151 | peano2zd 12708 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) ∈
ℤ) |
| 153 | 7, 8 | mulgcl 19078 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ ((-𝑚 − 2) + 1) ∈ ℤ
∧ 𝑋 ∈ 𝐵) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵) |
| 154 | 75, 152, 77, 153 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵) |
| 155 | 7, 34 | posref 18334 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Poset ∧ (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵) → (((-𝑚 − 2) + 1) · 𝑋) ≤ (((-𝑚 − 2) + 1) · 𝑋)) |
| 156 | 149, 154,
155 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) ≤ (((-𝑚 − 2) + 1) · 𝑋)) |
| 157 | 147, 156 | eqbrtrrd 5147 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) ≤ (((-𝑚 − 2) + 1) · 𝑋)) |
| 158 | 157 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) ≤ (((-𝑚 − 2) + 1) · 𝑋)) |
| 159 | 135, 158 | eqbrtrd 5145 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → 𝑌 ≤ (((-𝑚 − 2) + 1) · 𝑋)) |
| 160 | | oveq1 7420 |
. . . . . . . 8
⊢ (𝑛 = (-𝑚 − 2) → (𝑛 · 𝑋) = ((-𝑚 − 2) · 𝑋)) |
| 161 | 160 | breq1d 5133 |
. . . . . . 7
⊢ (𝑛 = (-𝑚 − 2) → ((𝑛 · 𝑋) < 𝑌 ↔ ((-𝑚 − 2) · 𝑋) < 𝑌)) |
| 162 | | oveq1 7420 |
. . . . . . . . 9
⊢ (𝑛 = (-𝑚 − 2) → (𝑛 + 1) = ((-𝑚 − 2) + 1)) |
| 163 | 162 | oveq1d 7428 |
. . . . . . . 8
⊢ (𝑛 = (-𝑚 − 2) → ((𝑛 + 1) · 𝑋) = (((-𝑚 − 2) + 1) · 𝑋)) |
| 164 | 163 | breq2d 5135 |
. . . . . . 7
⊢ (𝑛 = (-𝑚 − 2) → (𝑌 ≤ ((𝑛 + 1) · 𝑋) ↔ 𝑌 ≤ (((-𝑚 − 2) + 1) · 𝑋))) |
| 165 | 161, 164 | anbi12d 632 |
. . . . . 6
⊢ (𝑛 = (-𝑚 − 2) → (((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)) ↔ (((-𝑚 − 2) · 𝑋) < 𝑌 ∧ 𝑌 ≤ (((-𝑚 − 2) + 1) · 𝑋)))) |
| 166 | 165 | rspcev 3605 |
. . . . 5
⊢ (((-𝑚 − 2) ∈ ℤ ∧
(((-𝑚 − 2) · 𝑋) < 𝑌 ∧ 𝑌 ≤ (((-𝑚 − 2) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 167 | 65, 136, 159, 166 | syl12anc 836 |
. . . 4
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 168 | 76 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑚 + 1) ∈ ℤ) |
| 169 | 168 | znegcld 12707 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → -(𝑚 + 1) ∈ ℤ) |
| 170 | 2 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0
∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋)) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → 𝑊 ∈ oGrp) |
| 171 | 72 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0
∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋)) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) →
(oppg‘𝑊) ∈ oGrp) |
| 172 | 170, 171 | jca 511 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0
∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋)) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp)) |
| 173 | 172 | 3anassrs 1360 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp)) |
| 174 | 123 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg‘𝑊)‘𝑌) ∈ 𝐵) |
| 175 | 79 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵) |
| 176 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) |
| 177 | 7, 17, 9 | ogrpinvlt 33039 |
. . . . . . . 8
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp) ∧
((invg‘𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → (((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋) ↔ ((invg‘𝑊)‘((𝑚 + 1) · 𝑋)) <
((invg‘𝑊)‘((invg‘𝑊)‘𝑌)))) |
| 178 | 177 | biimpa 476 |
. . . . . . 7
⊢ ((((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp) ∧
((invg‘𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg‘𝑊)‘((𝑚 + 1) · 𝑋)) <
((invg‘𝑊)‘((invg‘𝑊)‘𝑌))) |
| 179 | 173, 174,
175, 176, 178 | syl31anc 1374 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg‘𝑊)‘((𝑚 + 1) · 𝑋)) <
((invg‘𝑊)‘((invg‘𝑊)‘𝑌))) |
| 180 | 114 | ad2antrr 726 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) = ((invg‘𝑊)‘((𝑚 + 1) · 𝑋))) |
| 181 | 180 | eqcomd 2740 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg‘𝑊)‘((𝑚 + 1) · 𝑋)) = (-(𝑚 + 1) · 𝑋)) |
| 182 | 133 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) = 𝑌) |
| 183 | 179, 181,
182 | 3brtr3d 5154 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) < 𝑌) |
| 184 | | simp-4l 782 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝜑) |
| 185 | 7, 8 | mulgcl 19078 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑚 · 𝑋) ∈ 𝐵) |
| 186 | 75, 60, 77, 185 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵) |
| 187 | 7, 17, 9 | ogrpinvlt 33039 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ oGrp ∧
(oppg‘𝑊) ∈ oGrp) ∧ (𝑚 · 𝑋) ∈ 𝐵 ∧ ((invg‘𝑊)‘𝑌) ∈ 𝐵) → ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ↔ ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) <
((invg‘𝑊)‘(𝑚 · 𝑋)))) |
| 188 | 74, 186, 123, 187 | syl3anc 1372 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ↔ ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) <
((invg‘𝑊)‘(𝑚 · 𝑋)))) |
| 189 | 188 | biimpa 476 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌)) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) <
((invg‘𝑊)‘(𝑚 · 𝑋))) |
| 190 | 189 | adantrr 717 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) <
((invg‘𝑊)‘(𝑚 · 𝑋))) |
| 191 | 190 | adantr 480 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) <
((invg‘𝑊)‘(𝑚 · 𝑋))) |
| 192 | | negdi 11548 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝑚 + 1) =
(-𝑚 + -1)) |
| 193 | 66, 40, 192 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ -(𝑚 + 1) = (-𝑚 + -1)) |
| 194 | 193 | oveq1d 7428 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ (-(𝑚 + 1) + 1) =
((-𝑚 + -1) +
1)) |
| 195 | 66 | negcld 11589 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ -𝑚 ∈
ℂ) |
| 196 | 91 | negcld 11589 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ -1 ∈ ℂ) |
| 197 | 195, 196,
91 | addassd 11265 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ ((-𝑚 + -1) + 1) =
(-𝑚 + (-1 +
1))) |
| 198 | 43 | oveq2i 7424 |
. . . . . . . . . . . . . . 15
⊢ (-𝑚 + (-1 + 1)) = (-𝑚 + 0) |
| 199 | 198 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (-𝑚 + (-1 + 1)) =
(-𝑚 + 0)) |
| 200 | 195 | addridd 11443 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (-𝑚 + 0) = -𝑚) |
| 201 | 197, 199,
200 | 3eqtrd 2773 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ ((-𝑚 + -1) + 1) =
-𝑚) |
| 202 | 194, 201 | eqtrd 2769 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (-(𝑚 + 1) + 1) =
-𝑚) |
| 203 | 202 | oveq1d 7428 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((-(𝑚 + 1) + 1)
·
𝑋) = (-𝑚 · 𝑋)) |
| 204 | 203 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋)) |
| 205 | 7, 8, 9 | mulgneg 19079 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑚 · 𝑋) = ((invg‘𝑊)‘(𝑚 · 𝑋))) |
| 206 | 75, 60, 77, 205 | syl3anc 1372 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 · 𝑋) = ((invg‘𝑊)‘(𝑚 · 𝑋))) |
| 207 | 204, 206 | eqtrd 2769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg‘𝑊)‘(𝑚 · 𝑋))) |
| 208 | 207 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg‘𝑊)‘(𝑚 · 𝑋))) |
| 209 | 208 | eqcomd 2740 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg‘𝑊)‘(𝑚 · 𝑋)) = ((-(𝑚 + 1) + 1) · 𝑋)) |
| 210 | 191, 182,
209 | 3brtr3d 5154 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 < ((-(𝑚 + 1) + 1) · 𝑋)) |
| 211 | | ovexd 7448 |
. . . . . . 7
⊢ (𝜑 → ((-(𝑚 + 1) + 1) · 𝑋) ∈ V) |
| 212 | 34, 17 | pltle 18347 |
. . . . . . 7
⊢ ((𝑊 ∈ oGrp ∧ 𝑌 ∈ 𝐵 ∧ ((-(𝑚 + 1) + 1) · 𝑋) ∈ V) → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ≤ ((-(𝑚 + 1) + 1) · 𝑋))) |
| 213 | 2, 120, 211, 212 | syl3anc 1372 |
. . . . . 6
⊢ (𝜑 → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ≤ ((-(𝑚 + 1) + 1) · 𝑋))) |
| 214 | 184, 210,
213 | sylc 65 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 ≤ ((-(𝑚 + 1) + 1) · 𝑋)) |
| 215 | | oveq1 7420 |
. . . . . . . 8
⊢ (𝑛 = -(𝑚 + 1) → (𝑛 · 𝑋) = (-(𝑚 + 1) · 𝑋)) |
| 216 | 215 | breq1d 5133 |
. . . . . . 7
⊢ (𝑛 = -(𝑚 + 1) → ((𝑛 · 𝑋) < 𝑌 ↔ (-(𝑚 + 1) · 𝑋) < 𝑌)) |
| 217 | | oveq1 7420 |
. . . . . . . . 9
⊢ (𝑛 = -(𝑚 + 1) → (𝑛 + 1) = (-(𝑚 + 1) + 1)) |
| 218 | 217 | oveq1d 7428 |
. . . . . . . 8
⊢ (𝑛 = -(𝑚 + 1) → ((𝑛 + 1) · 𝑋) = ((-(𝑚 + 1) + 1) · 𝑋)) |
| 219 | 218 | breq2d 5135 |
. . . . . . 7
⊢ (𝑛 = -(𝑚 + 1) → (𝑌 ≤ ((𝑛 + 1) · 𝑋) ↔ 𝑌 ≤ ((-(𝑚 + 1) + 1) · 𝑋))) |
| 220 | 216, 219 | anbi12d 632 |
. . . . . 6
⊢ (𝑛 = -(𝑚 + 1) → (((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)) ↔ ((-(𝑚 + 1) · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((-(𝑚 + 1) + 1) · 𝑋)))) |
| 221 | 220 | rspcev 3605 |
. . . . 5
⊢ ((-(𝑚 + 1) ∈ ℤ ∧
((-(𝑚 + 1) · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((-(𝑚 + 1) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 222 | 169, 183,
214, 221 | syl12anc 836 |
. . . 4
⊢
(((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) ∧ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 223 | 7, 34, 17 | tlt2 32898 |
. . . . . 6
⊢ ((𝑊 ∈ Toset ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((invg‘𝑊)‘𝑌) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌) ∨ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) |
| 224 | 148, 79, 123, 223 | syl3anc 1372 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌) ∨ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) |
| 225 | 224 | adantr 480 |
. . . 4
⊢ ((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) → (((𝑚 + 1) · 𝑋) ≤
((invg‘𝑊)‘𝑌) ∨ ((invg‘𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) |
| 226 | 167, 222,
225 | mpjaodan 960 |
. . 3
⊢ ((((𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 227 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 < 0 ) → 𝑊 ∈ oGrp) |
| 228 | | archirng.2 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ Archi) |
| 229 | 228 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 < 0 ) → 𝑊 ∈ Archi) |
| 230 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 < 0 ) → 𝑋 ∈ 𝐵) |
| 231 | 122 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 < 0 ) →
((invg‘𝑊)‘𝑌) ∈ 𝐵) |
| 232 | 16 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 < 0 ) → 0 < 𝑋) |
| 233 | 133 | breq1d 5133 |
. . . . . 6
⊢ (𝜑 →
(((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) < 0 ↔ 𝑌 < 0 )) |
| 234 | 233 | biimpar 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 < 0 ) →
((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) < 0 ) |
| 235 | 7, 17, 9, 18 | ogrpinv0lt 33038 |
. . . . . . 7
⊢ ((𝑊 ∈ oGrp ∧
((invg‘𝑊)‘𝑌) ∈ 𝐵) → ( 0 <
((invg‘𝑊)‘𝑌) ↔ ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) < 0 )) |
| 236 | 2, 122, 235 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ( 0 <
((invg‘𝑊)‘𝑌) ↔ ((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) < 0 )) |
| 237 | 236 | biimpar 477 |
. . . . 5
⊢ ((𝜑 ∧
((invg‘𝑊)‘((invg‘𝑊)‘𝑌)) < 0 ) → 0 <
((invg‘𝑊)‘𝑌)) |
| 238 | 234, 237 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 < 0 ) → 0 <
((invg‘𝑊)‘𝑌)) |
| 239 | 7, 18, 17, 34, 8, 227, 229, 230, 231, 232, 238 | archirng 33134 |
. . 3
⊢ ((𝜑 ∧ 𝑌 < 0 ) → ∃𝑚 ∈ ℕ0
((𝑚 · 𝑋) <
((invg‘𝑊)‘𝑌) ∧ ((invg‘𝑊)‘𝑌) ≤ ((𝑚 + 1) · 𝑋))) |
| 240 | 226, 239 | r19.29a 3149 |
. 2
⊢ ((𝜑 ∧ 𝑌 < 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 241 | | nn0ssz 12619 |
. . 3
⊢
ℕ0 ⊆ ℤ |
| 242 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑌) → 𝑊 ∈ oGrp) |
| 243 | 228 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑌) → 𝑊 ∈ Archi) |
| 244 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑌) → 𝑋 ∈ 𝐵) |
| 245 | 120 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑌) → 𝑌 ∈ 𝐵) |
| 246 | 16 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑌) → 0 < 𝑋) |
| 247 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 0 < 𝑌) → 0 < 𝑌) |
| 248 | 7, 18, 17, 34, 8, 242, 243, 244, 245, 246, 247 | archirng 33134 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝑌) → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 249 | | ssrexv 4033 |
. . 3
⊢
(ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋)))) |
| 250 | 241, 248,
249 | mpsyl 68 |
. 2
⊢ ((𝜑 ∧ 0 < 𝑌) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |
| 251 | 7, 17 | tlt3 32899 |
. . 3
⊢ ((𝑊 ∈ Toset ∧ 𝑌 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑌 = 0 ∨ 𝑌 < 0 ∨ 0 < 𝑌)) |
| 252 | 29, 120, 33, 251 | syl3anc 1372 |
. 2
⊢ (𝜑 → (𝑌 = 0 ∨ 𝑌 < 0 ∨ 0 < 𝑌)) |
| 253 | 58, 240, 250, 252 | mpjao3dan 1433 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) |