Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirngz Structured version   Visualization version   GIF version

Theorem archirngz 33169
Description: Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirngz.1 (𝜑 → (oppg𝑊) ∈ oGrp)
Assertion
Ref Expression
archirngz (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirngz
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 neg1z 12679 . . 3 -1 ∈ ℤ
2 archirng.1 . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
3 ogrpgrp 33053 . . . . . . . . . 10 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
42, 3syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
5 1zzd 12674 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
6 archirng.3 . . . . . . . . 9 (𝜑𝑋𝐵)
7 archirng.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
8 archirng.x . . . . . . . . . 10 · = (.g𝑊)
9 eqid 2740 . . . . . . . . . 10 (invg𝑊) = (invg𝑊)
107, 8, 9mulgneg 19132 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 1 ∈ ℤ ∧ 𝑋𝐵) → (-1 · 𝑋) = ((invg𝑊)‘(1 · 𝑋)))
114, 5, 6, 10syl3anc 1371 . . . . . . . 8 (𝜑 → (-1 · 𝑋) = ((invg𝑊)‘(1 · 𝑋)))
127, 8mulg1 19121 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
136, 12syl 17 . . . . . . . . 9 (𝜑 → (1 · 𝑋) = 𝑋)
1413fveq2d 6924 . . . . . . . 8 (𝜑 → ((invg𝑊)‘(1 · 𝑋)) = ((invg𝑊)‘𝑋))
1511, 14eqtrd 2780 . . . . . . 7 (𝜑 → (-1 · 𝑋) = ((invg𝑊)‘𝑋))
16 archirng.5 . . . . . . . 8 (𝜑0 < 𝑋)
17 archirng.i . . . . . . . . . 10 < = (lt‘𝑊)
18 archirng.0 . . . . . . . . . 10 0 = (0g𝑊)
197, 17, 9, 18ogrpinv0lt 33072 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ((invg𝑊)‘𝑋) < 0 ))
2019biimpa 476 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ((invg𝑊)‘𝑋) < 0 )
212, 6, 16, 20syl21anc 837 . . . . . . 7 (𝜑 → ((invg𝑊)‘𝑋) < 0 )
2215, 21eqbrtrd 5188 . . . . . 6 (𝜑 → (-1 · 𝑋) < 0 )
2322adantr 480 . . . . 5 ((𝜑𝑌 = 0 ) → (-1 · 𝑋) < 0 )
24 simpr 484 . . . . 5 ((𝜑𝑌 = 0 ) → 𝑌 = 0 )
2523, 24breqtrrd 5194 . . . 4 ((𝜑𝑌 = 0 ) → (-1 · 𝑋) < 𝑌)
26 isogrp 33052 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2726simprbi 496 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
28 omndtos 33055 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
292, 27, 283syl 18 . . . . . . . 8 (𝜑𝑊 ∈ Toset)
30 tospos 18490 . . . . . . . 8 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
3129, 30syl 17 . . . . . . 7 (𝜑𝑊 ∈ Poset)
327, 18grpidcl 19005 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
332, 3, 323syl 18 . . . . . . 7 (𝜑0𝐵)
34 archirng.l . . . . . . . 8 = (le‘𝑊)
357, 34posref 18388 . . . . . . 7 ((𝑊 ∈ Poset ∧ 0𝐵) → 0 0 )
3631, 33, 35syl2anc 583 . . . . . 6 (𝜑0 0 )
3736adantr 480 . . . . 5 ((𝜑𝑌 = 0 ) → 0 0 )
38 1m1e0 12365 . . . . . . . . . 10 (1 − 1) = 0
3938negeqi 11529 . . . . . . . . 9 -(1 − 1) = -0
40 ax-1cn 11242 . . . . . . . . . 10 1 ∈ ℂ
4140, 40negsubdii 11621 . . . . . . . . 9 -(1 − 1) = (-1 + 1)
42 neg0 11582 . . . . . . . . 9 -0 = 0
4339, 41, 423eqtr3i 2776 . . . . . . . 8 (-1 + 1) = 0
4443oveq1i 7458 . . . . . . 7 ((-1 + 1) · 𝑋) = (0 · 𝑋)
457, 18, 8mulg0 19114 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = 0 )
466, 45syl 17 . . . . . . 7 (𝜑 → (0 · 𝑋) = 0 )
4744, 46eqtrid 2792 . . . . . 6 (𝜑 → ((-1 + 1) · 𝑋) = 0 )
4847adantr 480 . . . . 5 ((𝜑𝑌 = 0 ) → ((-1 + 1) · 𝑋) = 0 )
4937, 24, 483brtr4d 5198 . . . 4 ((𝜑𝑌 = 0 ) → 𝑌 ((-1 + 1) · 𝑋))
5025, 49jca 511 . . 3 ((𝜑𝑌 = 0 ) → ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋)))
51 oveq1 7455 . . . . . 6 (𝑛 = -1 → (𝑛 · 𝑋) = (-1 · 𝑋))
5251breq1d 5176 . . . . 5 (𝑛 = -1 → ((𝑛 · 𝑋) < 𝑌 ↔ (-1 · 𝑋) < 𝑌))
53 oveq1 7455 . . . . . . 7 (𝑛 = -1 → (𝑛 + 1) = (-1 + 1))
5453oveq1d 7463 . . . . . 6 (𝑛 = -1 → ((𝑛 + 1) · 𝑋) = ((-1 + 1) · 𝑋))
5554breq2d 5178 . . . . 5 (𝑛 = -1 → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 ((-1 + 1) · 𝑋)))
5652, 55anbi12d 631 . . . 4 (𝑛 = -1 → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋))))
5756rspcev 3635 . . 3 ((-1 ∈ ℤ ∧ ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
581, 50, 57sylancr 586 . 2 ((𝜑𝑌 = 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
59 simpr 484 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
6059nn0zd 12665 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
6160ad2antrr 725 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑚 ∈ ℤ)
6261znegcld 12749 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → -𝑚 ∈ ℤ)
63 2z 12675 . . . . . . 7 2 ∈ ℤ
6463a1i 11 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 2 ∈ ℤ)
6562, 64zsubcld 12752 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-𝑚 − 2) ∈ ℤ)
66 nn0cn 12563 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
6766adantl 481 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
68 2cnd 12371 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℂ)
6967, 68negdi2d 11661 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 2) = (-𝑚 − 2))
7069oveq1d 7463 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((-𝑚 − 2) · 𝑋))
712ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ oGrp)
72 archirngz.1 . . . . . . . . . . . 12 (𝜑 → (oppg𝑊) ∈ oGrp)
7372ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (oppg𝑊) ∈ oGrp)
7471, 73jca 511 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
754ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Grp)
7660peano2zd 12750 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℤ)
776ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑋𝐵)
787, 8mulgcl 19131 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
7975, 76, 77, 78syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
8063a1i 11 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
8160, 80zaddcld 12751 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈ ℤ)
827, 8mulgcl 19131 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋𝐵) → ((𝑚 + 2) · 𝑋) ∈ 𝐵)
8375, 81, 77, 82syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) ∈ 𝐵)
8475, 32syl 17 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0𝐵)
8516ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0 < 𝑋)
86 eqid 2740 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
877, 17, 86ogrpaddlt 33067 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑋𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
8871, 84, 77, 79, 85, 87syl131anc 1383 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
897, 86, 18grplid 19007 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋))
9075, 79, 89syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋))
91 1cnd 11285 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
9266, 91, 91addassd 11312 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (𝑚 + (1 + 1)))
93 1p1e2 12418 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
9493oveq2i 7459 . . . . . . . . . . . . . . . 16 (𝑚 + (1 + 1)) = (𝑚 + 2)
9592, 94eqtrdi 2796 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (𝑚 + 2))
9666, 91addcld 11309 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℂ)
9796, 91addcomd 11492 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (1 + (𝑚 + 1)))
9895, 97eqtr3d 2782 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 + 2) = (1 + (𝑚 + 1)))
9998oveq1d 7463 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋))
10099adantl 481 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋))
101 1zzd 12674 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
1027, 8, 86mulgdir 19146 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵)) → ((1 + (𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)))
10375, 101, 76, 77, 102syl13anc 1372 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 + (𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)))
10477, 12syl 17 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
105104oveq1d 7463 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)) = (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
106100, 103, 1053eqtrrd 2785 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 2) · 𝑋))
10788, 90, 1063brtr3d 5197 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋))
1087, 17, 9ogrpinvlt 33073 . . . . . . . . . . 11 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋) ↔ ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋))))
109108biimpa 476 . . . . . . . . . 10 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) ∧ ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋)) → ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11074, 79, 83, 107, 109syl31anc 1373 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
1117, 8, 9mulgneg 19132 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑚 + 2) · 𝑋) = ((invg𝑊)‘((𝑚 + 2) · 𝑋)))
11275, 81, 77, 111syl3anc 1371 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((invg𝑊)‘((𝑚 + 2) · 𝑋)))
1137, 8, 9mulgneg 19132 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11475, 76, 77, 113syl3anc 1371 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
115110, 112, 1143brtr4d 5198 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
11670, 115eqbrtrrd 5190 . . . . . . 7 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
117116ad2antrr 725 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
118114ad2antrr 725 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11931ad4antr 731 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑊 ∈ Poset)
120 archirng.4 . . . . . . . . . . . 12 (𝜑𝑌𝐵)
1217, 9grpinvcl 19027 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑊)‘𝑌) ∈ 𝐵)
1224, 120, 121syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((invg𝑊)‘𝑌) ∈ 𝐵)
123122ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((invg𝑊)‘𝑌) ∈ 𝐵)
124123ad2antrr 725 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) ∈ 𝐵)
12579ad2antrr 725 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
126 simplrr 777 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))
127 simpr 484 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌))
1287, 34posasymb 18389 . . . . . . . . . 10 ((𝑊 ∈ Poset ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ((((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) ↔ ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋)))
129128biimpa 476 . . . . . . . . 9 (((𝑊 ∈ Poset ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ (((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌))) → ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))
130119, 124, 125, 126, 127, 129syl32anc 1378 . . . . . . . 8 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))
131130fveq2d 6924 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
1327, 9grpinvinv 19045 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
1334, 120, 132syl2anc 583 . . . . . . . 8 (𝜑 → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
134133ad4antr 731 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
135118, 131, 1343eqtr2rd 2787 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑌 = (-(𝑚 + 1) · 𝑋))
136117, 135breqtrrd 5194 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < 𝑌)
137 1cnd 11285 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
13867, 68, 137addsubassd 11667 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) − 1) = (𝑚 + (2 − 1)))
139 2m1e1 12419 . . . . . . . . . . . . 13 (2 − 1) = 1
140139oveq2i 7459 . . . . . . . . . . . 12 (𝑚 + (2 − 1)) = (𝑚 + 1)
141138, 140eqtr2di 2797 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) = ((𝑚 + 2) − 1))
142141negeqd 11530 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 1) = -((𝑚 + 2) − 1))
14367, 68addcld 11309 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈ ℂ)
144143, 137negsubdid 11662 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -((𝑚 + 2) − 1) = (-(𝑚 + 2) + 1))
14569oveq1d 7463 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) + 1) = ((-𝑚 − 2) + 1))
146142, 144, 1453eqtrrd 2785 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) = -(𝑚 + 1))
147146oveq1d 7463 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) = (-(𝑚 + 1) · 𝑋))
14829ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Toset)
149148, 30syl 17 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Poset)
15060znegcld 12749 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -𝑚 ∈ ℤ)
151150, 80zsubcld 12752 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 − 2) ∈ ℤ)
152151peano2zd 12750 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) ∈ ℤ)
1537, 8mulgcl 19131 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((-𝑚 − 2) + 1) ∈ ℤ ∧ 𝑋𝐵) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵)
15475, 152, 77, 153syl3anc 1371 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵)
1557, 34posref 18388 . . . . . . . . 9 ((𝑊 ∈ Poset ∧ (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵) → (((-𝑚 − 2) + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
156149, 154, 155syl2anc 583 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
157147, 156eqbrtrrd 5190 . . . . . . 7 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
158157ad2antrr 725 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
159135, 158eqbrtrd 5188 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑌 (((-𝑚 − 2) + 1) · 𝑋))
160 oveq1 7455 . . . . . . . 8 (𝑛 = (-𝑚 − 2) → (𝑛 · 𝑋) = ((-𝑚 − 2) · 𝑋))
161160breq1d 5176 . . . . . . 7 (𝑛 = (-𝑚 − 2) → ((𝑛 · 𝑋) < 𝑌 ↔ ((-𝑚 − 2) · 𝑋) < 𝑌))
162 oveq1 7455 . . . . . . . . 9 (𝑛 = (-𝑚 − 2) → (𝑛 + 1) = ((-𝑚 − 2) + 1))
163162oveq1d 7463 . . . . . . . 8 (𝑛 = (-𝑚 − 2) → ((𝑛 + 1) · 𝑋) = (((-𝑚 − 2) + 1) · 𝑋))
164163breq2d 5178 . . . . . . 7 (𝑛 = (-𝑚 − 2) → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 (((-𝑚 − 2) + 1) · 𝑋)))
165161, 164anbi12d 631 . . . . . 6 (𝑛 = (-𝑚 − 2) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (((-𝑚 − 2) · 𝑋) < 𝑌𝑌 (((-𝑚 − 2) + 1) · 𝑋))))
166165rspcev 3635 . . . . 5 (((-𝑚 − 2) ∈ ℤ ∧ (((-𝑚 − 2) · 𝑋) < 𝑌𝑌 (((-𝑚 − 2) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
16765, 136, 159, 166syl12anc 836 . . . 4 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
16876ad2antrr 725 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑚 + 1) ∈ ℤ)
169168znegcld 12749 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → -(𝑚 + 1) ∈ ℤ)
1702ad2antrr 725 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → 𝑊 ∈ oGrp)
17172ad2antrr 725 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (oppg𝑊) ∈ oGrp)
172170, 171jca 511 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
1731723anassrs 1360 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
174123ad2antrr 725 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘𝑌) ∈ 𝐵)
17579ad2antrr 725 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
176 simpr 484 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))
1777, 17, 9ogrpinvlt 33073 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → (((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋) ↔ ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌))))
178177biimpa 476 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌)))
179173, 174, 175, 176, 178syl31anc 1373 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌)))
180114ad2antrr 725 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
181180eqcomd 2746 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) = (-(𝑚 + 1) · 𝑋))
182133ad4antr 731 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
183179, 181, 1823brtr3d 5197 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) < 𝑌)
184 simp-4l 782 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝜑)
1857, 8mulgcl 19131 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
18675, 60, 77, 185syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵)
1877, 17, 9ogrpinvlt 33073 . . . . . . . . . . 11 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ (𝑚 · 𝑋) ∈ 𝐵 ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋))))
18874, 186, 123, 187syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋))))
189188biimpa 476 . . . . . . . . 9 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 · 𝑋) < ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
190189adantrr 716 . . . . . . . 8 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
191190adantr 480 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
192 negdi 11593 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑚 + 1) = (-𝑚 + -1))
19366, 40, 192sylancl 585 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → -(𝑚 + 1) = (-𝑚 + -1))
194193oveq1d 7463 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → (-(𝑚 + 1) + 1) = ((-𝑚 + -1) + 1))
19566negcld 11634 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → -𝑚 ∈ ℂ)
19691negcld 11634 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → -1 ∈ ℂ)
197195, 196, 91addassd 11312 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → ((-𝑚 + -1) + 1) = (-𝑚 + (-1 + 1)))
19843oveq2i 7459 . . . . . . . . . . . . . . 15 (-𝑚 + (-1 + 1)) = (-𝑚 + 0)
199198a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (-𝑚 + (-1 + 1)) = (-𝑚 + 0))
200195addridd 11490 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (-𝑚 + 0) = -𝑚)
201197, 199, 2003eqtrd 2784 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → ((-𝑚 + -1) + 1) = -𝑚)
202194, 201eqtrd 2780 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (-(𝑚 + 1) + 1) = -𝑚)
203202oveq1d 7463 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋))
204203adantl 481 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋))
2057, 8, 9mulgneg 19132 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (-𝑚 · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
20675, 60, 77, 205syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
207204, 206eqtrd 2780 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
208207ad2antrr 725 . . . . . . . 8 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
209208eqcomd 2746 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘(𝑚 · 𝑋)) = ((-(𝑚 + 1) + 1) · 𝑋))
210191, 182, 2093brtr3d 5197 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 < ((-(𝑚 + 1) + 1) · 𝑋))
211 ovexd 7483 . . . . . . 7 (𝜑 → ((-(𝑚 + 1) + 1) · 𝑋) ∈ V)
21234, 17pltle 18403 . . . . . . 7 ((𝑊 ∈ oGrp ∧ 𝑌𝐵 ∧ ((-(𝑚 + 1) + 1) · 𝑋) ∈ V) → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
2132, 120, 211, 212syl3anc 1371 . . . . . 6 (𝜑 → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
214184, 210, 213sylc 65 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋))
215 oveq1 7455 . . . . . . . 8 (𝑛 = -(𝑚 + 1) → (𝑛 · 𝑋) = (-(𝑚 + 1) · 𝑋))
216215breq1d 5176 . . . . . . 7 (𝑛 = -(𝑚 + 1) → ((𝑛 · 𝑋) < 𝑌 ↔ (-(𝑚 + 1) · 𝑋) < 𝑌))
217 oveq1 7455 . . . . . . . . 9 (𝑛 = -(𝑚 + 1) → (𝑛 + 1) = (-(𝑚 + 1) + 1))
218217oveq1d 7463 . . . . . . . 8 (𝑛 = -(𝑚 + 1) → ((𝑛 + 1) · 𝑋) = ((-(𝑚 + 1) + 1) · 𝑋))
219218breq2d 5178 . . . . . . 7 (𝑛 = -(𝑚 + 1) → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
220216, 219anbi12d 631 . . . . . 6 (𝑛 = -(𝑚 + 1) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ((-(𝑚 + 1) · 𝑋) < 𝑌𝑌 ((-(𝑚 + 1) + 1) · 𝑋))))
221220rspcev 3635 . . . . 5 ((-(𝑚 + 1) ∈ ℤ ∧ ((-(𝑚 + 1) · 𝑋) < 𝑌𝑌 ((-(𝑚 + 1) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
222169, 183, 214, 221syl12anc 836 . . . 4 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2237, 34, 17tlt2 32942 . . . . . 6 ((𝑊 ∈ Toset ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
224148, 79, 123, 223syl3anc 1371 . . . . 5 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
225224adantr 480 . . . 4 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
226167, 222, 225mpjaodan 959 . . 3 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2272adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → 𝑊 ∈ oGrp)
228 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
229228adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → 𝑊 ∈ Archi)
2306adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → 𝑋𝐵)
231122adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → ((invg𝑊)‘𝑌) ∈ 𝐵)
23216adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → 0 < 𝑋)
233133breq1d 5176 . . . . . 6 (𝜑 → (((invg𝑊)‘((invg𝑊)‘𝑌)) < 0𝑌 < 0 ))
234233biimpar 477 . . . . 5 ((𝜑𝑌 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 )
2357, 17, 9, 18ogrpinv0lt 33072 . . . . . . 7 ((𝑊 ∈ oGrp ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → ( 0 < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ))
2362, 122, 235syl2anc 583 . . . . . 6 (𝜑 → ( 0 < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ))
237236biimpar 477 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ) → 0 < ((invg𝑊)‘𝑌))
238234, 237syldan 590 . . . 4 ((𝜑𝑌 < 0 ) → 0 < ((invg𝑊)‘𝑌))
2397, 18, 17, 34, 8, 227, 229, 230, 231, 232, 238archirng 33168 . . 3 ((𝜑𝑌 < 0 ) → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)))
240226, 239r19.29a 3168 . 2 ((𝜑𝑌 < 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
241 nn0ssz 12662 . . 3 0 ⊆ ℤ
2422adantr 480 . . . 4 ((𝜑0 < 𝑌) → 𝑊 ∈ oGrp)
243228adantr 480 . . . 4 ((𝜑0 < 𝑌) → 𝑊 ∈ Archi)
2446adantr 480 . . . 4 ((𝜑0 < 𝑌) → 𝑋𝐵)
245120adantr 480 . . . 4 ((𝜑0 < 𝑌) → 𝑌𝐵)
24616adantr 480 . . . 4 ((𝜑0 < 𝑌) → 0 < 𝑋)
247 simpr 484 . . . 4 ((𝜑0 < 𝑌) → 0 < 𝑌)
2487, 18, 17, 34, 8, 242, 243, 244, 245, 246, 247archirng 33168 . . 3 ((𝜑0 < 𝑌) → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
249 ssrexv 4078 . . 3 (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋))))
250241, 248, 249mpsyl 68 . 2 ((𝜑0 < 𝑌) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2517, 17tlt3 32943 . . 3 ((𝑊 ∈ Toset ∧ 𝑌𝐵0𝐵) → (𝑌 = 0𝑌 < 00 < 𝑌))
25229, 120, 33, 251syl3anc 1371 . 2 (𝜑 → (𝑌 = 0𝑌 < 00 < 𝑌))
25358, 240, 250, 252mpjao3dan 1432 1 (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  -cneg 11521  2c2 12348  0cn0 12553  cz 12639  Basecbs 17258  +gcplusg 17311  lecple 17318  0gc0g 17499  Posetcpo 18377  ltcplt 18378  Tosetctos 18486  Grpcgrp 18973  invgcminusg 18974  .gcmg 19107  oppgcoppg 19385  oMndcomnd 33047  oGrpcogrp 33048  Archicarchi 33157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-ple 17331  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-toset 18487  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-mulg 19108  df-oppg 19386  df-omnd 33049  df-ogrp 33050  df-inftm 33158  df-archi 33159
This theorem is referenced by:  archiabllem2c  33175
  Copyright terms: Public domain W3C validator