Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1b Structured version   Visualization version   GIF version

Theorem archiabllem1b 31446
Description: Lemma for archiabl 31452. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1b ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hints:   < (𝑦)   · (𝑦)   𝑈(𝑦)   (𝑦,𝑛)   0 (𝑦)

Proof of Theorem archiabllem1b
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0zd 12331 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 0 ∈ ℤ)
2 simpr 485 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
3 archiabllem1.u . . . . . 6 (𝜑𝑈𝐵)
4 archiabllem.b . . . . . . 7 𝐵 = (Base‘𝑊)
5 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
6 archiabllem.m . . . . . . 7 · = (.g𝑊)
74, 5, 6mulg0 18707 . . . . . 6 (𝑈𝐵 → (0 · 𝑈) = 0 )
83, 7syl 17 . . . . 5 (𝜑 → (0 · 𝑈) = 0 )
98ad2antrr 723 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → (0 · 𝑈) = 0 )
102, 9eqtr4d 2781 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = (0 · 𝑈))
11 oveq1 7282 . . . 4 (𝑛 = 0 → (𝑛 · 𝑈) = (0 · 𝑈))
1211rspceeqv 3575 . . 3 ((0 ∈ ℤ ∧ 𝑦 = (0 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
131, 10, 12syl2anc 584 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
14 simplr 766 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℕ)
1514nnzd 12425 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℤ)
1615znegcld 12428 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → -𝑚 ∈ ℤ)
1733ad2ant1 1132 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑈𝐵)
1817ad2antrr 723 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑈𝐵)
19 eqid 2738 . . . . . . . 8 (invg𝑊) = (invg𝑊)
204, 6, 19mulgnegnn 18714 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑈𝐵) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
2114, 18, 20syl2anc 584 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
22 simpr 485 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
2322fveq2d 6778 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = ((invg𝑊)‘(𝑚 · 𝑈)))
24 archiabllem.g . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
25243ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ oGrp)
26 ogrpgrp 31329 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Grp)
28 simp2 1136 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦𝐵)
294, 19grpinvinv 18642 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3027, 28, 29syl2anc 584 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3130ad2antrr 723 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3221, 23, 313eqtr2rd 2785 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑦 = (-𝑚 · 𝑈))
33 oveq1 7282 . . . . . 6 (𝑛 = -𝑚 → (𝑛 · 𝑈) = (-𝑚 · 𝑈))
3433rspceeqv 3575 . . . . 5 ((-𝑚 ∈ ℤ ∧ 𝑦 = (-𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
3516, 32, 34syl2anc 584 . . . 4 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
36 archiabllem.e . . . . 5 = (le‘𝑊)
37 archiabllem.t . . . . 5 < = (lt‘𝑊)
38 archiabllem.a . . . . . 6 (𝜑𝑊 ∈ Archi)
39383ad2ant1 1132 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Archi)
40 archiabllem1.p . . . . . 6 (𝜑0 < 𝑈)
41403ad2ant1 1132 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < 𝑈)
42 simp1 1135 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝜑)
43 archiabllem1.s . . . . . 6 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
4442, 43syl3an1 1162 . . . . 5 (((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
454, 19grpinvcl 18627 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘𝑦) ∈ 𝐵)
4627, 28, 45syl2anc 584 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘𝑦) ∈ 𝐵)
474, 5grpidcl 18607 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
4827, 47syl 17 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 0𝐵)
49 simp3 1137 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦 < 0 )
50 eqid 2738 . . . . . . . 8 (+g𝑊) = (+g𝑊)
514, 37, 50ogrpaddlt 31343 . . . . . . 7 ((𝑊 ∈ oGrp ∧ (𝑦𝐵0𝐵 ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) ∧ 𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
5225, 28, 48, 46, 49, 51syl131anc 1382 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
534, 50, 5, 19grprinv 18629 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
5427, 28, 53syl2anc 584 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
554, 50, 5grplid 18609 . . . . . . 7 ((𝑊 ∈ Grp ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5627, 46, 55syl2anc 584 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5752, 54, 563brtr3d 5105 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < ((invg𝑊)‘𝑦))
584, 5, 36, 37, 6, 25, 39, 17, 41, 44, 46, 57archiabllem1a 31445 . . . 4 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑚 ∈ ℕ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
5935, 58r19.29a 3218 . . 3 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
60593expa 1117 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
61 nnssz 12340 . . 3 ℕ ⊆ ℤ
62243ad2ant1 1132 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ oGrp)
63383ad2ant1 1132 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ Archi)
6433ad2ant1 1132 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑈𝐵)
65403ad2ant1 1132 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑈)
66 simp1 1135 . . . . . 6 ((𝜑𝑦𝐵0 < 𝑦) → 𝜑)
6766, 43syl3an1 1162 . . . . 5 (((𝜑𝑦𝐵0 < 𝑦) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
68 simp2 1136 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑦𝐵)
69 simp3 1137 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑦)
704, 5, 36, 37, 6, 62, 63, 64, 65, 67, 68, 69archiabllem1a 31445 . . . 4 ((𝜑𝑦𝐵0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
71703expa 1117 . . 3 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
72 ssrexv 3988 . . 3 (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)))
7361, 71, 72mpsyl 68 . 2 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
74 isogrp 31328 . . . . . 6 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
7574simprbi 497 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
76 omndtos 31331 . . . . 5 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
7724, 75, 763syl 18 . . . 4 (𝜑𝑊 ∈ Toset)
7877adantr 481 . . 3 ((𝜑𝑦𝐵) → 𝑊 ∈ Toset)
79 simpr 485 . . 3 ((𝜑𝑦𝐵) → 𝑦𝐵)
8024, 26, 473syl 18 . . . 4 (𝜑0𝐵)
8180adantr 481 . . 3 ((𝜑𝑦𝐵) → 0𝐵)
824, 37tlt3 31248 . . 3 ((𝑊 ∈ Toset ∧ 𝑦𝐵0𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8378, 79, 81, 82syl3anc 1370 . 2 ((𝜑𝑦𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8413, 60, 73, 83mpjao3dan 1430 1 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  -cneg 11206  cn 11973  cz 12319  Basecbs 16912  +gcplusg 16962  lecple 16969  0gc0g 17150  ltcplt 18026  Tosetctos 18134  Grpcgrp 18577  invgcminusg 18578  .gcmg 18700  oMndcomnd 31323  oGrpcogrp 31324  Archicarchi 31431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-toset 18135  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-omnd 31325  df-ogrp 31326  df-inftm 31432  df-archi 31433
This theorem is referenced by:  archiabllem1  31447
  Copyright terms: Public domain W3C validator