Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1b Structured version   Visualization version   GIF version

Theorem archiabllem1b 31388
Description: Lemma for archiabl 31394. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1b ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hints:   < (𝑦)   · (𝑦)   𝑈(𝑦)   (𝑦,𝑛)   0 (𝑦)

Proof of Theorem archiabllem1b
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0zd 12277 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 0 ∈ ℤ)
2 simpr 484 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
3 archiabllem1.u . . . . . 6 (𝜑𝑈𝐵)
4 archiabllem.b . . . . . . 7 𝐵 = (Base‘𝑊)
5 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
6 archiabllem.m . . . . . . 7 · = (.g𝑊)
74, 5, 6mulg0 18651 . . . . . 6 (𝑈𝐵 → (0 · 𝑈) = 0 )
83, 7syl 17 . . . . 5 (𝜑 → (0 · 𝑈) = 0 )
98ad2antrr 722 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → (0 · 𝑈) = 0 )
102, 9eqtr4d 2780 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = (0 · 𝑈))
11 oveq1 7267 . . . 4 (𝑛 = 0 → (𝑛 · 𝑈) = (0 · 𝑈))
1211rspceeqv 3572 . . 3 ((0 ∈ ℤ ∧ 𝑦 = (0 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
131, 10, 12syl2anc 583 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
14 simplr 765 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℕ)
1514nnzd 12370 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℤ)
1615znegcld 12373 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → -𝑚 ∈ ℤ)
1733ad2ant1 1131 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑈𝐵)
1817ad2antrr 722 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑈𝐵)
19 eqid 2737 . . . . . . . 8 (invg𝑊) = (invg𝑊)
204, 6, 19mulgnegnn 18658 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑈𝐵) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
2114, 18, 20syl2anc 583 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
22 simpr 484 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
2322fveq2d 6765 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = ((invg𝑊)‘(𝑚 · 𝑈)))
24 archiabllem.g . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
25243ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ oGrp)
26 ogrpgrp 31271 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Grp)
28 simp2 1135 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦𝐵)
294, 19grpinvinv 18586 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3027, 28, 29syl2anc 583 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3130ad2antrr 722 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3221, 23, 313eqtr2rd 2784 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑦 = (-𝑚 · 𝑈))
33 oveq1 7267 . . . . . 6 (𝑛 = -𝑚 → (𝑛 · 𝑈) = (-𝑚 · 𝑈))
3433rspceeqv 3572 . . . . 5 ((-𝑚 ∈ ℤ ∧ 𝑦 = (-𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
3516, 32, 34syl2anc 583 . . . 4 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
36 archiabllem.e . . . . 5 = (le‘𝑊)
37 archiabllem.t . . . . 5 < = (lt‘𝑊)
38 archiabllem.a . . . . . 6 (𝜑𝑊 ∈ Archi)
39383ad2ant1 1131 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Archi)
40 archiabllem1.p . . . . . 6 (𝜑0 < 𝑈)
41403ad2ant1 1131 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < 𝑈)
42 simp1 1134 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝜑)
43 archiabllem1.s . . . . . 6 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
4442, 43syl3an1 1161 . . . . 5 (((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
454, 19grpinvcl 18571 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘𝑦) ∈ 𝐵)
4627, 28, 45syl2anc 583 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘𝑦) ∈ 𝐵)
474, 5grpidcl 18551 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
4827, 47syl 17 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 0𝐵)
49 simp3 1136 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦 < 0 )
50 eqid 2737 . . . . . . . 8 (+g𝑊) = (+g𝑊)
514, 37, 50ogrpaddlt 31285 . . . . . . 7 ((𝑊 ∈ oGrp ∧ (𝑦𝐵0𝐵 ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) ∧ 𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
5225, 28, 48, 46, 49, 51syl131anc 1381 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
534, 50, 5, 19grprinv 18573 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
5427, 28, 53syl2anc 583 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
554, 50, 5grplid 18553 . . . . . . 7 ((𝑊 ∈ Grp ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5627, 46, 55syl2anc 583 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5752, 54, 563brtr3d 5106 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < ((invg𝑊)‘𝑦))
584, 5, 36, 37, 6, 25, 39, 17, 41, 44, 46, 57archiabllem1a 31387 . . . 4 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑚 ∈ ℕ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
5935, 58r19.29a 3216 . . 3 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
60593expa 1116 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
61 nnssz 12286 . . 3 ℕ ⊆ ℤ
62243ad2ant1 1131 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ oGrp)
63383ad2ant1 1131 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ Archi)
6433ad2ant1 1131 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑈𝐵)
65403ad2ant1 1131 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑈)
66 simp1 1134 . . . . . 6 ((𝜑𝑦𝐵0 < 𝑦) → 𝜑)
6766, 43syl3an1 1161 . . . . 5 (((𝜑𝑦𝐵0 < 𝑦) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
68 simp2 1135 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑦𝐵)
69 simp3 1136 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑦)
704, 5, 36, 37, 6, 62, 63, 64, 65, 67, 68, 69archiabllem1a 31387 . . . 4 ((𝜑𝑦𝐵0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
71703expa 1116 . . 3 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
72 ssrexv 3989 . . 3 (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)))
7361, 71, 72mpsyl 68 . 2 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
74 isogrp 31270 . . . . . 6 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
7574simprbi 496 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
76 omndtos 31273 . . . . 5 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
7724, 75, 763syl 18 . . . 4 (𝜑𝑊 ∈ Toset)
7877adantr 480 . . 3 ((𝜑𝑦𝐵) → 𝑊 ∈ Toset)
79 simpr 484 . . 3 ((𝜑𝑦𝐵) → 𝑦𝐵)
8024, 26, 473syl 18 . . . 4 (𝜑0𝐵)
8180adantr 480 . . 3 ((𝜑𝑦𝐵) → 0𝐵)
824, 37tlt3 31190 . . 3 ((𝑊 ∈ Toset ∧ 𝑦𝐵0𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8378, 79, 81, 82syl3anc 1369 . 2 ((𝜑𝑦𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8413, 60, 73, 83mpjao3dan 1429 1 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2107  wrex 3063  wss 3888   class class class wbr 5075  cfv 6423  (class class class)co 7260  0cc0 10818  -cneg 11152  cn 11919  cz 12265  Basecbs 16856  +gcplusg 16906  lecple 16913  0gc0g 17094  ltcplt 17970  Tosetctos 18078  Grpcgrp 18521  invgcminusg 18522  .gcmg 18644  oMndcomnd 31265  oGrpcogrp 31266  Archicarchi 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-cnex 10874  ax-resscn 10875  ax-1cn 10876  ax-icn 10877  ax-addcl 10878  ax-addrcl 10879  ax-mulcl 10880  ax-mulrcl 10881  ax-mulcom 10882  ax-addass 10883  ax-mulass 10884  ax-distr 10885  ax-i2m1 10886  ax-1ne0 10887  ax-1rid 10888  ax-rnegex 10889  ax-rrecex 10890  ax-cnre 10891  ax-pre-lttri 10892  ax-pre-lttrn 10893  ax-pre-ltadd 10894  ax-pre-mulgt0 10895
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6259  df-on 6260  df-lim 6261  df-suc 6262  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-riota 7217  df-ov 7263  df-oprab 7264  df-mpo 7265  df-om 7693  df-1st 7809  df-2nd 7810  df-frecs 8073  df-wrecs 8104  df-recs 8178  df-rdg 8217  df-er 8461  df-en 8697  df-dom 8698  df-sdom 8699  df-pnf 10958  df-mnf 10959  df-xr 10960  df-ltxr 10961  df-le 10962  df-sub 11153  df-neg 11154  df-nn 11920  df-n0 12180  df-z 12266  df-uz 12528  df-fz 13185  df-seq 13666  df-0g 17096  df-proset 17957  df-poset 17975  df-plt 17992  df-toset 18079  df-mgm 18270  df-sgrp 18319  df-mnd 18330  df-grp 18524  df-minusg 18525  df-sbg 18526  df-mulg 18645  df-omnd 31267  df-ogrp 31268  df-inftm 31374  df-archi 31375
This theorem is referenced by:  archiabllem1  31389
  Copyright terms: Public domain W3C validator