Step | Hyp | Ref
| Expression |
1 | | 0zd 12331 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 0 ) → 0 ∈
ℤ) |
2 | | simpr 485 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
3 | | archiabllem1.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝐵) |
4 | | archiabllem.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑊) |
5 | | archiabllem.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑊) |
6 | | archiabllem.m |
. . . . . . 7
⊢ · =
(.g‘𝑊) |
7 | 4, 5, 6 | mulg0 18707 |
. . . . . 6
⊢ (𝑈 ∈ 𝐵 → (0 · 𝑈) = 0 ) |
8 | 3, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 · 𝑈) = 0 ) |
9 | 8 | ad2antrr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 0 ) → (0 · 𝑈) = 0 ) |
10 | 2, 9 | eqtr4d 2781 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 0 ) → 𝑦 = (0 · 𝑈)) |
11 | | oveq1 7282 |
. . . 4
⊢ (𝑛 = 0 → (𝑛 · 𝑈) = (0 · 𝑈)) |
12 | 11 | rspceeqv 3575 |
. . 3
⊢ ((0
∈ ℤ ∧ 𝑦 = (0
·
𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) |
13 | 1, 10, 12 | syl2anc 584 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 = 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) |
14 | | simplr 766 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℕ) |
15 | 14 | nnzd 12425 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℤ) |
16 | 15 | znegcld 12428 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → -𝑚 ∈ ℤ) |
17 | 3 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 𝑈 ∈ 𝐵) |
18 | 17 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑈 ∈ 𝐵) |
19 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝑊) = (invg‘𝑊) |
20 | 4, 6, 19 | mulgnegnn 18714 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ ∧ 𝑈 ∈ 𝐵) → (-𝑚 · 𝑈) = ((invg‘𝑊)‘(𝑚 · 𝑈))) |
21 | 14, 18, 20 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → (-𝑚 · 𝑈) = ((invg‘𝑊)‘(𝑚 · 𝑈))) |
22 | | simpr 485 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) |
23 | 22 | fveq2d 6778 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑦)) = ((invg‘𝑊)‘(𝑚 · 𝑈))) |
24 | | archiabllem.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ oGrp) |
25 | 24 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 𝑊 ∈ oGrp) |
26 | | ogrpgrp 31329 |
. . . . . . . . 9
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) |
27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 𝑊 ∈ Grp) |
28 | | simp2 1136 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 𝑦 ∈ 𝐵) |
29 | 4, 19 | grpinvinv 18642 |
. . . . . . . 8
⊢ ((𝑊 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑦)) = 𝑦) |
30 | 27, 28, 29 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) →
((invg‘𝑊)‘((invg‘𝑊)‘𝑦)) = 𝑦) |
31 | 30 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑦)) = 𝑦) |
32 | 21, 23, 31 | 3eqtr2rd 2785 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑦 = (-𝑚 · 𝑈)) |
33 | | oveq1 7282 |
. . . . . 6
⊢ (𝑛 = -𝑚 → (𝑛 · 𝑈) = (-𝑚 · 𝑈)) |
34 | 33 | rspceeqv 3575 |
. . . . 5
⊢ ((-𝑚 ∈ ℤ ∧ 𝑦 = (-𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) |
35 | 16, 32, 34 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) |
36 | | archiabllem.e |
. . . . 5
⊢ ≤ =
(le‘𝑊) |
37 | | archiabllem.t |
. . . . 5
⊢ < =
(lt‘𝑊) |
38 | | archiabllem.a |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ Archi) |
39 | 38 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 𝑊 ∈ Archi) |
40 | | archiabllem1.p |
. . . . . 6
⊢ (𝜑 → 0 < 𝑈) |
41 | 40 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 0 < 𝑈) |
42 | | simp1 1135 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 𝜑) |
43 | | archiabllem1.s |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) |
44 | 42, 43 | syl3an1 1162 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) |
45 | 4, 19 | grpinvcl 18627 |
. . . . . 6
⊢ ((𝑊 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝑊)‘𝑦) ∈ 𝐵) |
46 | 27, 28, 45 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) →
((invg‘𝑊)‘𝑦) ∈ 𝐵) |
47 | 4, 5 | grpidcl 18607 |
. . . . . . . 8
⊢ (𝑊 ∈ Grp → 0 ∈ 𝐵) |
48 | 27, 47 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 0 ∈ 𝐵) |
49 | | simp3 1137 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 𝑦 < 0 ) |
50 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑊) = (+g‘𝑊) |
51 | 4, 37, 50 | ogrpaddlt 31343 |
. . . . . . 7
⊢ ((𝑊 ∈ oGrp ∧ (𝑦 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ((invg‘𝑊)‘𝑦) ∈ 𝐵) ∧ 𝑦 < 0 ) → (𝑦(+g‘𝑊)((invg‘𝑊)‘𝑦)) < ( 0 (+g‘𝑊)((invg‘𝑊)‘𝑦))) |
52 | 25, 28, 48, 46, 49, 51 | syl131anc 1382 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → (𝑦(+g‘𝑊)((invg‘𝑊)‘𝑦)) < ( 0 (+g‘𝑊)((invg‘𝑊)‘𝑦))) |
53 | 4, 50, 5, 19 | grprinv 18629 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑦(+g‘𝑊)((invg‘𝑊)‘𝑦)) = 0 ) |
54 | 27, 28, 53 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → (𝑦(+g‘𝑊)((invg‘𝑊)‘𝑦)) = 0 ) |
55 | 4, 50, 5 | grplid 18609 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧
((invg‘𝑊)‘𝑦) ∈ 𝐵) → ( 0 (+g‘𝑊)((invg‘𝑊)‘𝑦)) = ((invg‘𝑊)‘𝑦)) |
56 | 27, 46, 55 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → ( 0
(+g‘𝑊)((invg‘𝑊)‘𝑦)) = ((invg‘𝑊)‘𝑦)) |
57 | 52, 54, 56 | 3brtr3d 5105 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → 0 <
((invg‘𝑊)‘𝑦)) |
58 | 4, 5, 36, 37, 6, 25, 39, 17, 41, 44, 46, 57 | archiabllem1a 31445 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → ∃𝑚 ∈ ℕ
((invg‘𝑊)‘𝑦) = (𝑚 · 𝑈)) |
59 | 35, 58 | r19.29a 3218 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) |
60 | 59 | 3expa 1117 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) |
61 | | nnssz 12340 |
. . 3
⊢ ℕ
⊆ ℤ |
62 | 24 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) → 𝑊 ∈ oGrp) |
63 | 38 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) → 𝑊 ∈ Archi) |
64 | 3 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) → 𝑈 ∈ 𝐵) |
65 | 40 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) → 0 < 𝑈) |
66 | | simp1 1135 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) → 𝜑) |
67 | 66, 43 | syl3an1 1162 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) |
68 | | simp2 1136 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) → 𝑦 ∈ 𝐵) |
69 | | simp3 1137 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) → 0 < 𝑦) |
70 | 4, 5, 36, 37, 6, 62, 63, 64, 65, 67, 68, 69 | archiabllem1a 31445 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈)) |
71 | 70 | 3expa 1117 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈)) |
72 | | ssrexv 3988 |
. . 3
⊢ (ℕ
⊆ ℤ → (∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))) |
73 | 61, 71, 72 | mpsyl 68 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) |
74 | | isogrp 31328 |
. . . . . 6
⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) |
75 | 74 | simprbi 497 |
. . . . 5
⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
76 | | omndtos 31331 |
. . . . 5
⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) |
77 | 24, 75, 76 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ Toset) |
78 | 77 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ Toset) |
79 | | simpr 485 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
80 | 24, 26, 47 | 3syl 18 |
. . . 4
⊢ (𝜑 → 0 ∈ 𝐵) |
81 | 80 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 0 ∈ 𝐵) |
82 | 4, 37 | tlt3 31248 |
. . 3
⊢ ((𝑊 ∈ Toset ∧ 𝑦 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑦 = 0 ∨ 𝑦 < 0 ∨ 0 < 𝑦)) |
83 | 78, 79, 81, 82 | syl3anc 1370 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦 = 0 ∨ 𝑦 < 0 ∨ 0 < 𝑦)) |
84 | 13, 60, 73, 83 | mpjao3dan 1430 |
1
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) |