Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1b Structured version   Visualization version   GIF version

Theorem archiabllem1b 33172
Description: Lemma for archiabl 33178. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1b ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hints:   < (𝑦)   · (𝑦)   𝑈(𝑦)   (𝑦,𝑛)   0 (𝑦)

Proof of Theorem archiabllem1b
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0zd 12651 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 0 ∈ ℤ)
2 simpr 484 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
3 archiabllem1.u . . . . . 6 (𝜑𝑈𝐵)
4 archiabllem.b . . . . . . 7 𝐵 = (Base‘𝑊)
5 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
6 archiabllem.m . . . . . . 7 · = (.g𝑊)
74, 5, 6mulg0 19114 . . . . . 6 (𝑈𝐵 → (0 · 𝑈) = 0 )
83, 7syl 17 . . . . 5 (𝜑 → (0 · 𝑈) = 0 )
98ad2antrr 725 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → (0 · 𝑈) = 0 )
102, 9eqtr4d 2783 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = (0 · 𝑈))
11 oveq1 7455 . . . 4 (𝑛 = 0 → (𝑛 · 𝑈) = (0 · 𝑈))
1211rspceeqv 3658 . . 3 ((0 ∈ ℤ ∧ 𝑦 = (0 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
131, 10, 12syl2anc 583 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
14 simplr 768 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℕ)
1514nnzd 12666 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℤ)
1615znegcld 12749 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → -𝑚 ∈ ℤ)
1733ad2ant1 1133 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑈𝐵)
1817ad2antrr 725 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑈𝐵)
19 eqid 2740 . . . . . . . 8 (invg𝑊) = (invg𝑊)
204, 6, 19mulgnegnn 19124 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑈𝐵) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
2114, 18, 20syl2anc 583 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
22 simpr 484 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
2322fveq2d 6924 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = ((invg𝑊)‘(𝑚 · 𝑈)))
24 archiabllem.g . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
25243ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ oGrp)
26 ogrpgrp 33053 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Grp)
28 simp2 1137 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦𝐵)
294, 19grpinvinv 19045 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3027, 28, 29syl2anc 583 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3130ad2antrr 725 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3221, 23, 313eqtr2rd 2787 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑦 = (-𝑚 · 𝑈))
33 oveq1 7455 . . . . . 6 (𝑛 = -𝑚 → (𝑛 · 𝑈) = (-𝑚 · 𝑈))
3433rspceeqv 3658 . . . . 5 ((-𝑚 ∈ ℤ ∧ 𝑦 = (-𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
3516, 32, 34syl2anc 583 . . . 4 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
36 archiabllem.e . . . . 5 = (le‘𝑊)
37 archiabllem.t . . . . 5 < = (lt‘𝑊)
38 archiabllem.a . . . . . 6 (𝜑𝑊 ∈ Archi)
39383ad2ant1 1133 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Archi)
40 archiabllem1.p . . . . . 6 (𝜑0 < 𝑈)
41403ad2ant1 1133 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < 𝑈)
42 simp1 1136 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝜑)
43 archiabllem1.s . . . . . 6 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
4442, 43syl3an1 1163 . . . . 5 (((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
454, 19grpinvcl 19027 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘𝑦) ∈ 𝐵)
4627, 28, 45syl2anc 583 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘𝑦) ∈ 𝐵)
474, 5grpidcl 19005 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
4827, 47syl 17 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 0𝐵)
49 simp3 1138 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦 < 0 )
50 eqid 2740 . . . . . . . 8 (+g𝑊) = (+g𝑊)
514, 37, 50ogrpaddlt 33067 . . . . . . 7 ((𝑊 ∈ oGrp ∧ (𝑦𝐵0𝐵 ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) ∧ 𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
5225, 28, 48, 46, 49, 51syl131anc 1383 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
534, 50, 5, 19grprinv 19030 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
5427, 28, 53syl2anc 583 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
554, 50, 5grplid 19007 . . . . . . 7 ((𝑊 ∈ Grp ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5627, 46, 55syl2anc 583 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5752, 54, 563brtr3d 5197 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < ((invg𝑊)‘𝑦))
584, 5, 36, 37, 6, 25, 39, 17, 41, 44, 46, 57archiabllem1a 33171 . . . 4 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑚 ∈ ℕ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
5935, 58r19.29a 3168 . . 3 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
60593expa 1118 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
61 nnssz 12661 . . 3 ℕ ⊆ ℤ
62243ad2ant1 1133 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ oGrp)
63383ad2ant1 1133 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ Archi)
6433ad2ant1 1133 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑈𝐵)
65403ad2ant1 1133 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑈)
66 simp1 1136 . . . . . 6 ((𝜑𝑦𝐵0 < 𝑦) → 𝜑)
6766, 43syl3an1 1163 . . . . 5 (((𝜑𝑦𝐵0 < 𝑦) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
68 simp2 1137 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑦𝐵)
69 simp3 1138 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑦)
704, 5, 36, 37, 6, 62, 63, 64, 65, 67, 68, 69archiabllem1a 33171 . . . 4 ((𝜑𝑦𝐵0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
71703expa 1118 . . 3 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
72 ssrexv 4078 . . 3 (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)))
7361, 71, 72mpsyl 68 . 2 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
74 isogrp 33052 . . . . . 6 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
7574simprbi 496 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
76 omndtos 33055 . . . . 5 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
7724, 75, 763syl 18 . . . 4 (𝜑𝑊 ∈ Toset)
7877adantr 480 . . 3 ((𝜑𝑦𝐵) → 𝑊 ∈ Toset)
79 simpr 484 . . 3 ((𝜑𝑦𝐵) → 𝑦𝐵)
8024, 26, 473syl 18 . . . 4 (𝜑0𝐵)
8180adantr 480 . . 3 ((𝜑𝑦𝐵) → 0𝐵)
824, 37tlt3 32943 . . 3 ((𝑊 ∈ Toset ∧ 𝑦𝐵0𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8378, 79, 81, 82syl3anc 1371 . 2 ((𝜑𝑦𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8413, 60, 73, 83mpjao3dan 1432 1 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  -cneg 11521  cn 12293  cz 12639  Basecbs 17258  +gcplusg 17311  lecple 17318  0gc0g 17499  ltcplt 18378  Tosetctos 18486  Grpcgrp 18973  invgcminusg 18974  .gcmg 19107  oMndcomnd 33047  oGrpcogrp 33048  Archicarchi 33157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-toset 18487  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-omnd 33049  df-ogrp 33050  df-inftm 33158  df-archi 33159
This theorem is referenced by:  archiabllem1  33173
  Copyright terms: Public domain W3C validator