Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1b Structured version   Visualization version   GIF version

Theorem archiabllem1b 30308
Description: Lemma for archiabl 30314. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1b ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hints:   < (𝑦)   · (𝑦)   𝑈(𝑦)   (𝑦,𝑛)   0 (𝑦)

Proof of Theorem archiabllem1b
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0zd 11740 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 0 ∈ ℤ)
2 simpr 479 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
3 archiabllem1.u . . . . . 6 (𝜑𝑈𝐵)
4 archiabllem.b . . . . . . 7 𝐵 = (Base‘𝑊)
5 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
6 archiabllem.m . . . . . . 7 · = (.g𝑊)
74, 5, 6mulg0 17933 . . . . . 6 (𝑈𝐵 → (0 · 𝑈) = 0 )
83, 7syl 17 . . . . 5 (𝜑 → (0 · 𝑈) = 0 )
98ad2antrr 716 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → (0 · 𝑈) = 0 )
102, 9eqtr4d 2817 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = (0 · 𝑈))
11 oveq1 6929 . . . 4 (𝑛 = 0 → (𝑛 · 𝑈) = (0 · 𝑈))
1211rspceeqv 3529 . . 3 ((0 ∈ ℤ ∧ 𝑦 = (0 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
131, 10, 12syl2anc 579 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
14 simplr 759 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℕ)
1514nnzd 11833 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℤ)
1615znegcld 11836 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → -𝑚 ∈ ℤ)
1733ad2ant1 1124 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑈𝐵)
1817ad2antrr 716 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑈𝐵)
19 eqid 2778 . . . . . . . 8 (invg𝑊) = (invg𝑊)
204, 6, 19mulgnegnn 17938 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑈𝐵) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
2114, 18, 20syl2anc 579 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
22 simpr 479 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
2322fveq2d 6450 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = ((invg𝑊)‘(𝑚 · 𝑈)))
24 archiabllem.g . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
25243ad2ant1 1124 . . . . . . . . 9 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ oGrp)
26 ogrpgrp 30265 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Grp)
28 simp2 1128 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦𝐵)
294, 19grpinvinv 17869 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3027, 28, 29syl2anc 579 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3130ad2antrr 716 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3221, 23, 313eqtr2rd 2821 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑦 = (-𝑚 · 𝑈))
33 oveq1 6929 . . . . . 6 (𝑛 = -𝑚 → (𝑛 · 𝑈) = (-𝑚 · 𝑈))
3433rspceeqv 3529 . . . . 5 ((-𝑚 ∈ ℤ ∧ 𝑦 = (-𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
3516, 32, 34syl2anc 579 . . . 4 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
36 archiabllem.e . . . . 5 = (le‘𝑊)
37 archiabllem.t . . . . 5 < = (lt‘𝑊)
38 archiabllem.a . . . . . 6 (𝜑𝑊 ∈ Archi)
39383ad2ant1 1124 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Archi)
40 archiabllem1.p . . . . . 6 (𝜑0 < 𝑈)
41403ad2ant1 1124 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < 𝑈)
42 simp1 1127 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝜑)
43 archiabllem1.s . . . . . 6 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
4442, 43syl3an1 1163 . . . . 5 (((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
454, 19grpinvcl 17854 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘𝑦) ∈ 𝐵)
4627, 28, 45syl2anc 579 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘𝑦) ∈ 𝐵)
474, 5grpidcl 17837 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
4827, 47syl 17 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 0𝐵)
49 simp3 1129 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦 < 0 )
50 eqid 2778 . . . . . . . 8 (+g𝑊) = (+g𝑊)
514, 37, 50ogrpaddlt 30280 . . . . . . 7 ((𝑊 ∈ oGrp ∧ (𝑦𝐵0𝐵 ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) ∧ 𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
5225, 28, 48, 46, 49, 51syl131anc 1451 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
534, 50, 5, 19grprinv 17856 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
5427, 28, 53syl2anc 579 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
554, 50, 5grplid 17839 . . . . . . 7 ((𝑊 ∈ Grp ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5627, 46, 55syl2anc 579 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5752, 54, 563brtr3d 4917 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < ((invg𝑊)‘𝑦))
584, 5, 36, 37, 6, 25, 39, 17, 41, 44, 46, 57archiabllem1a 30307 . . . 4 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑚 ∈ ℕ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
5935, 58r19.29a 3264 . . 3 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
60593expa 1108 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
61 nnssz 11748 . . 3 ℕ ⊆ ℤ
62243ad2ant1 1124 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ oGrp)
63383ad2ant1 1124 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ Archi)
6433ad2ant1 1124 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑈𝐵)
65403ad2ant1 1124 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑈)
66 simp1 1127 . . . . . 6 ((𝜑𝑦𝐵0 < 𝑦) → 𝜑)
6766, 43syl3an1 1163 . . . . 5 (((𝜑𝑦𝐵0 < 𝑦) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
68 simp2 1128 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑦𝐵)
69 simp3 1129 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑦)
704, 5, 36, 37, 6, 62, 63, 64, 65, 67, 68, 69archiabllem1a 30307 . . . 4 ((𝜑𝑦𝐵0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
71703expa 1108 . . 3 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
72 ssrexv 3886 . . 3 (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)))
7361, 71, 72mpsyl 68 . 2 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
74 isogrp 30264 . . . . . 6 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
7574simprbi 492 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
76 omndtos 30267 . . . . 5 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
7724, 75, 763syl 18 . . . 4 (𝜑𝑊 ∈ Toset)
7877adantr 474 . . 3 ((𝜑𝑦𝐵) → 𝑊 ∈ Toset)
79 simpr 479 . . 3 ((𝜑𝑦𝐵) → 𝑦𝐵)
8024, 26, 473syl 18 . . . 4 (𝜑0𝐵)
8180adantr 474 . . 3 ((𝜑𝑦𝐵) → 0𝐵)
824, 37tlt3 30227 . . 3 ((𝑊 ∈ Toset ∧ 𝑦𝐵0𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8378, 79, 81, 82syl3anc 1439 . 2 ((𝜑𝑦𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8413, 60, 73, 83mpjao3dan 1505 1 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3o 1070  w3a 1071   = wceq 1601  wcel 2107  wrex 3091  wss 3792   class class class wbr 4886  cfv 6135  (class class class)co 6922  0cc0 10272  -cneg 10607  cn 11374  cz 11728  Basecbs 16255  +gcplusg 16338  lecple 16345  0gc0g 16486  ltcplt 17327  Tosetctos 17419  Grpcgrp 17809  invgcminusg 17810  .gcmg 17927  oMndcomnd 30259  oGrpcogrp 30260  Archicarchi 30293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-seq 13120  df-0g 16488  df-proset 17314  df-poset 17332  df-plt 17344  df-toset 17420  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-omnd 30261  df-ogrp 30262  df-inftm 30294  df-archi 30295
This theorem is referenced by:  archiabllem1  30309
  Copyright terms: Public domain W3C validator