Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1 Structured version   Visualization version   GIF version

Theorem archiabllem1 30494
Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1 (𝜑𝑊 ∈ Abel)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑈   𝑥,𝑊   𝜑,𝑥   𝑥, ·   𝑥, 0   𝑥, <   𝑥,

Proof of Theorem archiabllem1
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
2 ogrpgrp 30428 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝜑𝑊 ∈ Grp)
4 simplr 756 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
54zcnd 11901 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
6 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
76zcnd 11901 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
85, 7addcomd 10642 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) = (𝑛 + 𝑚))
98oveq1d 6991 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑛 + 𝑚) · 𝑈))
103ad2antrr 713 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑊 ∈ Grp)
11 archiabllem1.u . . . . . . . . . . . 12 (𝜑𝑈𝐵)
1211ad2antrr 713 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑈𝐵)
13 archiabllem.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
14 archiabllem.m . . . . . . . . . . . 12 · = (.g𝑊)
15 eqid 2778 . . . . . . . . . . . 12 (+g𝑊) = (+g𝑊)
1613, 14, 15mulgdir 18043 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1710, 4, 6, 12, 16syl13anc 1352 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1813, 14, 15mulgdir 18043 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1910, 6, 4, 12, 18syl13anc 1352 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
209, 17, 193eqtr3d 2822 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2120adantllr 706 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2221adantlr 702 . . . . . . 7 (((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2322adantr 473 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
24 simpllr 763 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑦 = (𝑚 · 𝑈))
25 simpr 477 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑧 = (𝑛 · 𝑈))
2624, 25oveq12d 6994 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
2725, 24oveq12d 6994 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑧(+g𝑊)𝑦) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2823, 26, 273eqtr4d 2824 . . . . 5 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
29 simplll 762 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝜑)
30 simpr1r 1211 . . . . . . 7 ((𝜑 ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑚 ∈ ℤ ∧ 𝑦 = (𝑚 · 𝑈))) → 𝑧𝐵)
31303anassrs 1340 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝑧𝐵)
32 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
33 archiabllem.e . . . . . . 7 = (le‘𝑊)
34 archiabllem.t . . . . . . 7 < = (lt‘𝑊)
35 archiabllem.a . . . . . . 7 (𝜑𝑊 ∈ Archi)
36 archiabllem1.p . . . . . . 7 (𝜑0 < 𝑈)
37 archiabllem1.s . . . . . . 7 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
3813, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 30493 . . . . . 6 ((𝜑𝑧𝐵) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
3929, 31, 38syl2anc 576 . . . . 5 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
4028, 39r19.29a 3234 . . . 4 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4113, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 30493 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4241adantrr 704 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4340, 42r19.29a 3234 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4443ralrimivva 3141 . 2 (𝜑 → ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4513, 15isabl2 18674 . 2 (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦)))
463, 44, 45sylanbrc 575 1 (𝜑𝑊 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  wrex 3089   class class class wbr 4929  cfv 6188  (class class class)co 6976   + caddc 10338  cz 11793  Basecbs 16339  +gcplusg 16421  lecple 16428  0gc0g 16569  ltcplt 17409  Grpcgrp 17891  .gcmg 18011  Abelcabl 18667  oGrpcogrp 30423  Archicarchi 30478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-seq 13185  df-0g 16571  df-proset 17396  df-poset 17414  df-plt 17426  df-toset 17502  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-grp 17894  df-minusg 17895  df-sbg 17896  df-mulg 18012  df-cmn 18668  df-abl 18669  df-omnd 30424  df-ogrp 30425  df-inftm 30479  df-archi 30480
This theorem is referenced by:  archiabl  30499
  Copyright terms: Public domain W3C validator