Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1 Structured version   Visualization version   GIF version

Theorem archiabllem1 33183
Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1 (𝜑𝑊 ∈ Abel)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑈   𝑥,𝑊   𝜑,𝑥   𝑥, ·   𝑥, 0   𝑥, <   𝑥,

Proof of Theorem archiabllem1
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
2 ogrpgrp 33063 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝜑𝑊 ∈ Grp)
4 simplr 769 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
54zcnd 12721 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
6 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
76zcnd 12721 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
85, 7addcomd 11461 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) = (𝑛 + 𝑚))
98oveq1d 7446 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑛 + 𝑚) · 𝑈))
103ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑊 ∈ Grp)
11 archiabllem1.u . . . . . . . . . . . 12 (𝜑𝑈𝐵)
1211ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑈𝐵)
13 archiabllem.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
14 archiabllem.m . . . . . . . . . . . 12 · = (.g𝑊)
15 eqid 2735 . . . . . . . . . . . 12 (+g𝑊) = (+g𝑊)
1613, 14, 15mulgdir 19137 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1710, 4, 6, 12, 16syl13anc 1371 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1813, 14, 15mulgdir 19137 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1910, 6, 4, 12, 18syl13anc 1371 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
209, 17, 193eqtr3d 2783 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2120adantllr 719 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2221adantlr 715 . . . . . . 7 (((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2322adantr 480 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
24 simpllr 776 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑦 = (𝑚 · 𝑈))
25 simpr 484 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑧 = (𝑛 · 𝑈))
2624, 25oveq12d 7449 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
2725, 24oveq12d 7449 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑧(+g𝑊)𝑦) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2823, 26, 273eqtr4d 2785 . . . . 5 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
29 simplll 775 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝜑)
30 simpr1r 1230 . . . . . . 7 ((𝜑 ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑚 ∈ ℤ ∧ 𝑦 = (𝑚 · 𝑈))) → 𝑧𝐵)
31303anassrs 1359 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝑧𝐵)
32 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
33 archiabllem.e . . . . . . 7 = (le‘𝑊)
34 archiabllem.t . . . . . . 7 < = (lt‘𝑊)
35 archiabllem.a . . . . . . 7 (𝜑𝑊 ∈ Archi)
36 archiabllem1.p . . . . . . 7 (𝜑0 < 𝑈)
37 archiabllem1.s . . . . . . 7 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
3813, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 33182 . . . . . 6 ((𝜑𝑧𝐵) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
3929, 31, 38syl2anc 584 . . . . 5 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
4028, 39r19.29a 3160 . . . 4 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4113, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 33182 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4241adantrr 717 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4340, 42r19.29a 3160 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4443ralrimivva 3200 . 2 (𝜑 → ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4513, 15isabl2 19823 . 2 (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦)))
463, 44, 45sylanbrc 583 1 (𝜑𝑊 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431   + caddc 11156  cz 12611  Basecbs 17245  +gcplusg 17298  lecple 17305  0gc0g 17486  ltcplt 18366  Grpcgrp 18964  .gcmg 19098  Abelcabl 19814  oGrpcogrp 33058  Archicarchi 33167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-0g 17488  df-proset 18352  df-poset 18371  df-plt 18388  df-toset 18475  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-cmn 19815  df-abl 19816  df-omnd 33059  df-ogrp 33060  df-inftm 33168  df-archi 33169
This theorem is referenced by:  archiabl  33188
  Copyright terms: Public domain W3C validator