Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1 Structured version   Visualization version   GIF version

Theorem archiabllem1 30876
 Description: Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1 (𝜑𝑊 ∈ Abel)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑈   𝑥,𝑊   𝜑,𝑥   𝑥, ·   𝑥, 0   𝑥, <   𝑥,

Proof of Theorem archiabllem1
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
2 ogrpgrp 30758 . . 3 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝜑𝑊 ∈ Grp)
4 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
54zcnd 12080 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
6 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
76zcnd 12080 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
85, 7addcomd 10835 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) = (𝑛 + 𝑚))
98oveq1d 7154 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑛 + 𝑚) · 𝑈))
103ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑊 ∈ Grp)
11 archiabllem1.u . . . . . . . . . . . 12 (𝜑𝑈𝐵)
1211ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑈𝐵)
13 archiabllem.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑊)
14 archiabllem.m . . . . . . . . . . . 12 · = (.g𝑊)
15 eqid 2801 . . . . . . . . . . . 12 (+g𝑊) = (+g𝑊)
1613, 14, 15mulgdir 18255 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1710, 4, 6, 12, 16syl13anc 1369 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 + 𝑛) · 𝑈) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
1813, 14, 15mulgdir 18255 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1910, 6, 4, 12, 18syl13anc 1369 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑛 + 𝑚) · 𝑈) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
209, 17, 193eqtr3d 2844 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2120adantllr 718 . . . . . . . 8 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2221adantlr 714 . . . . . . 7 (((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2322adantr 484 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
24 simpllr 775 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑦 = (𝑚 · 𝑈))
25 simpr 488 . . . . . . 7 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → 𝑧 = (𝑛 · 𝑈))
2624, 25oveq12d 7157 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = ((𝑚 · 𝑈)(+g𝑊)(𝑛 · 𝑈)))
2725, 24oveq12d 7157 . . . . . 6 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑧(+g𝑊)𝑦) = ((𝑛 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
2823, 26, 273eqtr4d 2846 . . . . 5 ((((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) ∧ 𝑛 ∈ ℤ) ∧ 𝑧 = (𝑛 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
29 simplll 774 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝜑)
30 simpr1r 1228 . . . . . . 7 ((𝜑 ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑚 ∈ ℤ ∧ 𝑦 = (𝑚 · 𝑈))) → 𝑧𝐵)
31303anassrs 1357 . . . . . 6 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → 𝑧𝐵)
32 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
33 archiabllem.e . . . . . . 7 = (le‘𝑊)
34 archiabllem.t . . . . . . 7 < = (lt‘𝑊)
35 archiabllem.a . . . . . . 7 (𝜑𝑊 ∈ Archi)
36 archiabllem1.p . . . . . . 7 (𝜑0 < 𝑈)
37 archiabllem1.s . . . . . . 7 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
3813, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 30875 . . . . . 6 ((𝜑𝑧𝐵) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
3929, 31, 38syl2anc 587 . . . . 5 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑧 = (𝑛 · 𝑈))
4028, 39r19.29a 3251 . . . 4 ((((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑚 ∈ ℤ) ∧ 𝑦 = (𝑚 · 𝑈)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4113, 32, 33, 34, 14, 1, 35, 11, 36, 37archiabllem1b 30875 . . . . 5 ((𝜑𝑦𝐵) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4241adantrr 716 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑈))
4340, 42r19.29a 3251 . . 3 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4443ralrimivva 3159 . 2 (𝜑 → ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦))
4513, 15isabl2 18911 . 2 (𝑊 ∈ Abel ↔ (𝑊 ∈ Grp ∧ ∀𝑦𝐵𝑧𝐵 (𝑦(+g𝑊)𝑧) = (𝑧(+g𝑊)𝑦)))
463, 44, 45sylanbrc 586 1 (𝜑𝑊 ∈ Abel)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139   + caddc 10533  ℤcz 11973  Basecbs 16479  +gcplusg 16561  lecple 16568  0gc0g 16709  ltcplt 17547  Grpcgrp 18099  .gcmg 18220  Abelcabl 18903  oGrpcogrp 30753  Archicarchi 30860 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-seq 13369  df-0g 16711  df-proset 17534  df-poset 17552  df-plt 17564  df-toset 17640  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-cmn 18904  df-abl 18905  df-omnd 30754  df-ogrp 30755  df-inftm 30861  df-archi 30862 This theorem is referenced by:  archiabl  30881
 Copyright terms: Public domain W3C validator