| Step | Hyp | Ref
| Expression |
| 1 | | onsucsuccmpi.1 |
. . . 4
⊢ 𝐴 ∈ On |
| 2 | 1 | onsuci 7833 |
. . 3
⊢ suc 𝐴 ∈ On |
| 3 | | onsuctop 36451 |
. . 3
⊢ (suc
𝐴 ∈ On → suc suc
𝐴 ∈
Top) |
| 4 | 2, 3 | ax-mp 5 |
. 2
⊢ suc suc
𝐴 ∈
Top |
| 5 | 1 | onirri 6467 |
. . . . . . 7
⊢ ¬
𝐴 ∈ 𝐴 |
| 6 | 1, 1 | onsucssi 7836 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐴 ↔ suc 𝐴 ⊆ 𝐴) |
| 7 | 5, 6 | mtbi 322 |
. . . . . 6
⊢ ¬
suc 𝐴 ⊆ 𝐴 |
| 8 | | sseq1 3984 |
. . . . . 6
⊢ (suc
𝐴 = ∪ 𝑦
→ (suc 𝐴 ⊆ 𝐴 ↔ ∪ 𝑦
⊆ 𝐴)) |
| 9 | 7, 8 | mtbii 326 |
. . . . 5
⊢ (suc
𝐴 = ∪ 𝑦
→ ¬ ∪ 𝑦 ⊆ 𝐴) |
| 10 | | elpwi 4582 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 suc 𝐴 → 𝑦 ⊆ suc 𝐴) |
| 11 | 10 | unissd 4893 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫 suc 𝐴 → ∪ 𝑦
⊆ ∪ suc 𝐴) |
| 12 | 1 | onunisuci 6474 |
. . . . . 6
⊢ ∪ suc 𝐴 = 𝐴 |
| 13 | 11, 12 | sseqtrdi 3999 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 suc 𝐴 → ∪ 𝑦
⊆ 𝐴) |
| 14 | 9, 13 | nsyl 140 |
. . . 4
⊢ (suc
𝐴 = ∪ 𝑦
→ ¬ 𝑦 ∈
𝒫 suc 𝐴) |
| 15 | | eldif 3936 |
. . . . . . 7
⊢ (𝑦 ∈ (𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∖ 𝒫 suc 𝐴) ↔ (𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴)) |
| 16 | | elpwunsn 4660 |
. . . . . . 7
⊢ (𝑦 ∈ (𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∖ 𝒫 suc 𝐴) → suc 𝐴 ∈ 𝑦) |
| 17 | 15, 16 | sylbir 235 |
. . . . . 6
⊢ ((𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴) → suc 𝐴 ∈ 𝑦) |
| 18 | 17 | ex 412 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) → (¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴 ∈ 𝑦)) |
| 19 | | df-suc 6358 |
. . . . . 6
⊢ suc suc
𝐴 = (suc 𝐴 ∪ {suc 𝐴}) |
| 20 | 19 | pweqi 4591 |
. . . . 5
⊢ 𝒫
suc suc 𝐴 = 𝒫 (suc
𝐴 ∪ {suc 𝐴}) |
| 21 | 18, 20 | eleq2s 2852 |
. . . 4
⊢ (𝑦 ∈ 𝒫 suc suc 𝐴 → (¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴 ∈ 𝑦)) |
| 22 | | snelpwi 5418 |
. . . . 5
⊢ (suc
𝐴 ∈ 𝑦 → {suc 𝐴} ∈ 𝒫 𝑦) |
| 23 | | snfi 9057 |
. . . . . . . 8
⊢ {suc
𝐴} ∈
Fin |
| 24 | 23 | jctr 524 |
. . . . . . 7
⊢ ({suc
𝐴} ∈ 𝒫 𝑦 → ({suc 𝐴} ∈ 𝒫 𝑦 ∧ {suc 𝐴} ∈ Fin)) |
| 25 | | elin 3942 |
. . . . . . 7
⊢ ({suc
𝐴} ∈ (𝒫 𝑦 ∩ Fin) ↔ ({suc 𝐴} ∈ 𝒫 𝑦 ∧ {suc 𝐴} ∈ Fin)) |
| 26 | 24, 25 | sylibr 234 |
. . . . . 6
⊢ ({suc
𝐴} ∈ 𝒫 𝑦 → {suc 𝐴} ∈ (𝒫 𝑦 ∩ Fin)) |
| 27 | 2 | elexi 3482 |
. . . . . . . 8
⊢ suc 𝐴 ∈ V |
| 28 | 27 | unisn 4902 |
. . . . . . 7
⊢ ∪ {suc 𝐴} = suc 𝐴 |
| 29 | 28 | eqcomi 2744 |
. . . . . 6
⊢ suc 𝐴 = ∪
{suc 𝐴} |
| 30 | | unieq 4894 |
. . . . . . 7
⊢ (𝑧 = {suc 𝐴} → ∪ 𝑧 = ∪
{suc 𝐴}) |
| 31 | 30 | rspceeqv 3624 |
. . . . . 6
⊢ (({suc
𝐴} ∈ (𝒫 𝑦 ∩ Fin) ∧ suc 𝐴 = ∪
{suc 𝐴}) →
∃𝑧 ∈ (𝒫
𝑦 ∩ Fin)suc 𝐴 = ∪
𝑧) |
| 32 | 26, 29, 31 | sylancl 586 |
. . . . 5
⊢ ({suc
𝐴} ∈ 𝒫 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = ∪ 𝑧) |
| 33 | 22, 32 | syl 17 |
. . . 4
⊢ (suc
𝐴 ∈ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = ∪ 𝑧) |
| 34 | 14, 21, 33 | syl56 36 |
. . 3
⊢ (𝑦 ∈ 𝒫 suc suc 𝐴 → (suc 𝐴 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = ∪ 𝑧)) |
| 35 | 34 | rgen 3053 |
. 2
⊢
∀𝑦 ∈
𝒫 suc suc 𝐴(suc
𝐴 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩ Fin)suc
𝐴 = ∪ 𝑧) |
| 36 | 2 | onunisuci 6474 |
. . . 4
⊢ ∪ suc suc 𝐴 = suc 𝐴 |
| 37 | 36 | eqcomi 2744 |
. . 3
⊢ suc 𝐴 = ∪
suc suc 𝐴 |
| 38 | 37 | iscmp 23326 |
. 2
⊢ (suc suc
𝐴 ∈ Comp ↔ (suc
suc 𝐴 ∈ Top ∧
∀𝑦 ∈ 𝒫
suc suc 𝐴(suc 𝐴 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = ∪ 𝑧))) |
| 39 | 4, 35, 38 | mpbir2an 711 |
1
⊢ suc suc
𝐴 ∈
Comp |