Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucsuccmpi Structured version   Visualization version   GIF version

Theorem onsucsuccmpi 34632
Description: The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015.)
Hypothesis
Ref Expression
onsucsuccmpi.1 𝐴 ∈ On
Assertion
Ref Expression
onsucsuccmpi suc suc 𝐴 ∈ Comp

Proof of Theorem onsucsuccmpi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucsuccmpi.1 . . . 4 𝐴 ∈ On
21onsuci 7685 . . 3 suc 𝐴 ∈ On
3 onsuctop 34622 . . 3 (suc 𝐴 ∈ On → suc suc 𝐴 ∈ Top)
42, 3ax-mp 5 . 2 suc suc 𝐴 ∈ Top
51onirri 6373 . . . . . . 7 ¬ 𝐴𝐴
61, 1onsucssi 7688 . . . . . . 7 (𝐴𝐴 ↔ suc 𝐴𝐴)
75, 6mtbi 322 . . . . . 6 ¬ suc 𝐴𝐴
8 sseq1 3946 . . . . . 6 (suc 𝐴 = 𝑦 → (suc 𝐴𝐴 𝑦𝐴))
97, 8mtbii 326 . . . . 5 (suc 𝐴 = 𝑦 → ¬ 𝑦𝐴)
10 elpwi 4542 . . . . . . 7 (𝑦 ∈ 𝒫 suc 𝐴𝑦 ⊆ suc 𝐴)
1110unissd 4849 . . . . . 6 (𝑦 ∈ 𝒫 suc 𝐴 𝑦 suc 𝐴)
121onunisuci 6380 . . . . . 6 suc 𝐴 = 𝐴
1311, 12sseqtrdi 3971 . . . . 5 (𝑦 ∈ 𝒫 suc 𝐴 𝑦𝐴)
149, 13nsyl 140 . . . 4 (suc 𝐴 = 𝑦 → ¬ 𝑦 ∈ 𝒫 suc 𝐴)
15 eldif 3897 . . . . . . 7 (𝑦 ∈ (𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∖ 𝒫 suc 𝐴) ↔ (𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴))
16 elpwunsn 4619 . . . . . . 7 (𝑦 ∈ (𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∖ 𝒫 suc 𝐴) → suc 𝐴𝑦)
1715, 16sylbir 234 . . . . . 6 ((𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴) → suc 𝐴𝑦)
1817ex 413 . . . . 5 (𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) → (¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴𝑦))
19 df-suc 6272 . . . . . 6 suc suc 𝐴 = (suc 𝐴 ∪ {suc 𝐴})
2019pweqi 4551 . . . . 5 𝒫 suc suc 𝐴 = 𝒫 (suc 𝐴 ∪ {suc 𝐴})
2118, 20eleq2s 2857 . . . 4 (𝑦 ∈ 𝒫 suc suc 𝐴 → (¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴𝑦))
22 snelpwi 5360 . . . . 5 (suc 𝐴𝑦 → {suc 𝐴} ∈ 𝒫 𝑦)
23 snfi 8834 . . . . . . . 8 {suc 𝐴} ∈ Fin
2423jctr 525 . . . . . . 7 ({suc 𝐴} ∈ 𝒫 𝑦 → ({suc 𝐴} ∈ 𝒫 𝑦 ∧ {suc 𝐴} ∈ Fin))
25 elin 3903 . . . . . . 7 ({suc 𝐴} ∈ (𝒫 𝑦 ∩ Fin) ↔ ({suc 𝐴} ∈ 𝒫 𝑦 ∧ {suc 𝐴} ∈ Fin))
2624, 25sylibr 233 . . . . . 6 ({suc 𝐴} ∈ 𝒫 𝑦 → {suc 𝐴} ∈ (𝒫 𝑦 ∩ Fin))
272elexi 3451 . . . . . . . 8 suc 𝐴 ∈ V
2827unisn 4861 . . . . . . 7 {suc 𝐴} = suc 𝐴
2928eqcomi 2747 . . . . . 6 suc 𝐴 = {suc 𝐴}
30 unieq 4850 . . . . . . 7 (𝑧 = {suc 𝐴} → 𝑧 = {suc 𝐴})
3130rspceeqv 3575 . . . . . 6 (({suc 𝐴} ∈ (𝒫 𝑦 ∩ Fin) ∧ suc 𝐴 = {suc 𝐴}) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)
3226, 29, 31sylancl 586 . . . . 5 ({suc 𝐴} ∈ 𝒫 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)
3322, 32syl 17 . . . 4 (suc 𝐴𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)
3414, 21, 33syl56 36 . . 3 (𝑦 ∈ 𝒫 suc suc 𝐴 → (suc 𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧))
3534rgen 3074 . 2 𝑦 ∈ 𝒫 suc suc 𝐴(suc 𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)
362onunisuci 6380 . . . 4 suc suc 𝐴 = suc 𝐴
3736eqcomi 2747 . . 3 suc 𝐴 = suc suc 𝐴
3837iscmp 22539 . 2 (suc suc 𝐴 ∈ Comp ↔ (suc suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc suc 𝐴(suc 𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)))
394, 35, 38mpbir2an 708 1 suc suc 𝐴 ∈ Comp
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cdif 3884  cun 3885  cin 3886  wss 3887  𝒫 cpw 4533  {csn 4561   cuni 4839  Oncon0 6266  suc csuc 6268  Fincfn 8733  Topctop 22042  Compccmp 22537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737  df-topgen 17154  df-top 22043  df-bases 22096  df-cmp 22538
This theorem is referenced by:  onsucsuccmp  34633
  Copyright terms: Public domain W3C validator