Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucsuccmpi Structured version   Visualization version   GIF version

Theorem onsucsuccmpi 36431
Description: The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015.)
Hypothesis
Ref Expression
onsucsuccmpi.1 𝐴 ∈ On
Assertion
Ref Expression
onsucsuccmpi suc suc 𝐴 ∈ Comp

Proof of Theorem onsucsuccmpi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucsuccmpi.1 . . . 4 𝐴 ∈ On
21onsuci 7814 . . 3 suc 𝐴 ∈ On
3 onsuctop 36421 . . 3 (suc 𝐴 ∈ On → suc suc 𝐴 ∈ Top)
42, 3ax-mp 5 . 2 suc suc 𝐴 ∈ Top
51onirri 6447 . . . . . . 7 ¬ 𝐴𝐴
61, 1onsucssi 7817 . . . . . . 7 (𝐴𝐴 ↔ suc 𝐴𝐴)
75, 6mtbi 322 . . . . . 6 ¬ suc 𝐴𝐴
8 sseq1 3972 . . . . . 6 (suc 𝐴 = 𝑦 → (suc 𝐴𝐴 𝑦𝐴))
97, 8mtbii 326 . . . . 5 (suc 𝐴 = 𝑦 → ¬ 𝑦𝐴)
10 elpwi 4570 . . . . . . 7 (𝑦 ∈ 𝒫 suc 𝐴𝑦 ⊆ suc 𝐴)
1110unissd 4881 . . . . . 6 (𝑦 ∈ 𝒫 suc 𝐴 𝑦 suc 𝐴)
121onunisuci 6454 . . . . . 6 suc 𝐴 = 𝐴
1311, 12sseqtrdi 3987 . . . . 5 (𝑦 ∈ 𝒫 suc 𝐴 𝑦𝐴)
149, 13nsyl 140 . . . 4 (suc 𝐴 = 𝑦 → ¬ 𝑦 ∈ 𝒫 suc 𝐴)
15 eldif 3924 . . . . . . 7 (𝑦 ∈ (𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∖ 𝒫 suc 𝐴) ↔ (𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴))
16 elpwunsn 4648 . . . . . . 7 (𝑦 ∈ (𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∖ 𝒫 suc 𝐴) → suc 𝐴𝑦)
1715, 16sylbir 235 . . . . . 6 ((𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) ∧ ¬ 𝑦 ∈ 𝒫 suc 𝐴) → suc 𝐴𝑦)
1817ex 412 . . . . 5 (𝑦 ∈ 𝒫 (suc 𝐴 ∪ {suc 𝐴}) → (¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴𝑦))
19 df-suc 6338 . . . . . 6 suc suc 𝐴 = (suc 𝐴 ∪ {suc 𝐴})
2019pweqi 4579 . . . . 5 𝒫 suc suc 𝐴 = 𝒫 (suc 𝐴 ∪ {suc 𝐴})
2118, 20eleq2s 2846 . . . 4 (𝑦 ∈ 𝒫 suc suc 𝐴 → (¬ 𝑦 ∈ 𝒫 suc 𝐴 → suc 𝐴𝑦))
22 snelpwi 5403 . . . . 5 (suc 𝐴𝑦 → {suc 𝐴} ∈ 𝒫 𝑦)
23 snfi 9014 . . . . . . . 8 {suc 𝐴} ∈ Fin
2423jctr 524 . . . . . . 7 ({suc 𝐴} ∈ 𝒫 𝑦 → ({suc 𝐴} ∈ 𝒫 𝑦 ∧ {suc 𝐴} ∈ Fin))
25 elin 3930 . . . . . . 7 ({suc 𝐴} ∈ (𝒫 𝑦 ∩ Fin) ↔ ({suc 𝐴} ∈ 𝒫 𝑦 ∧ {suc 𝐴} ∈ Fin))
2624, 25sylibr 234 . . . . . 6 ({suc 𝐴} ∈ 𝒫 𝑦 → {suc 𝐴} ∈ (𝒫 𝑦 ∩ Fin))
272elexi 3470 . . . . . . . 8 suc 𝐴 ∈ V
2827unisn 4890 . . . . . . 7 {suc 𝐴} = suc 𝐴
2928eqcomi 2738 . . . . . 6 suc 𝐴 = {suc 𝐴}
30 unieq 4882 . . . . . . 7 (𝑧 = {suc 𝐴} → 𝑧 = {suc 𝐴})
3130rspceeqv 3611 . . . . . 6 (({suc 𝐴} ∈ (𝒫 𝑦 ∩ Fin) ∧ suc 𝐴 = {suc 𝐴}) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)
3226, 29, 31sylancl 586 . . . . 5 ({suc 𝐴} ∈ 𝒫 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)
3322, 32syl 17 . . . 4 (suc 𝐴𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)
3414, 21, 33syl56 36 . . 3 (𝑦 ∈ 𝒫 suc suc 𝐴 → (suc 𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧))
3534rgen 3046 . 2 𝑦 ∈ 𝒫 suc suc 𝐴(suc 𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)
362onunisuci 6454 . . . 4 suc suc 𝐴 = suc 𝐴
3736eqcomi 2738 . . 3 suc 𝐴 = suc suc 𝐴
3837iscmp 23275 . 2 (suc suc 𝐴 ∈ Comp ↔ (suc suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc suc 𝐴(suc 𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)suc 𝐴 = 𝑧)))
394, 35, 38mpbir2an 711 1 suc suc 𝐴 ∈ Comp
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3911  cun 3912  cin 3913  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871  Oncon0 6332  suc csuc 6334  Fincfn 8918  Topctop 22780  Compccmp 23273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-topgen 17406  df-top 22781  df-bases 22833  df-cmp 23274
This theorem is referenced by:  onsucsuccmp  36432
  Copyright terms: Public domain W3C validator