![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsseli | Structured version Visualization version GIF version |
Description: Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
on.2 | ⊢ 𝐵 ∈ On |
Ref | Expression |
---|---|
onsseli | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | on.2 | . 2 ⊢ 𝐵 ∈ On | |
3 | onsseleq 6401 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ⊆ wss 3946 Oncon0 6360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-br 5147 df-opab 5209 df-tr 5264 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-ord 6363 df-on 6364 |
This theorem is referenced by: cardom 9976 tskcard 10771 |
Copyright terms: Public domain | W3C validator |