Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onsseli | Structured version Visualization version GIF version |
Description: Subset is equivalent to membership or equality for ordinal numbers. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
on.2 | ⊢ 𝐵 ∈ On |
Ref | Expression |
---|---|
onsseli | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | on.2 | . 2 ⊢ 𝐵 ∈ On | |
3 | onsseleq 6210 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 Oncon0 6169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-tr 5139 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-ord 6172 df-on 6173 |
This theorem is referenced by: cardom 9448 tskcard 10241 |
Copyright terms: Public domain | W3C validator |