Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucconni Structured version   Visualization version   GIF version

Theorem onsucconni 36052
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Hypothesis
Ref Expression
onsucconni.1 𝐴 ∈ On
Assertion
Ref Expression
onsucconni suc 𝐴 ∈ Conn

Proof of Theorem onsucconni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onsucconni.1 . . 3 𝐴 ∈ On
2 onsuctop 36048 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ Top)
31, 2ax-mp 5 . 2 suc 𝐴 ∈ Top
4 elin 3960 . . . 4 (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ (Clsd‘suc 𝐴)))
5 elsuci 6438 . . . . 5 (𝑥 ∈ suc 𝐴 → (𝑥𝐴𝑥 = 𝐴))
61onunisuci 6491 . . . . . . 7 suc 𝐴 = 𝐴
76eqcomi 2734 . . . . . 6 𝐴 = suc 𝐴
87cldopn 22979 . . . . 5 (𝑥 ∈ (Clsd‘suc 𝐴) → (𝐴𝑥) ∈ suc 𝐴)
91onsuci 7843 . . . . . . . . . 10 suc 𝐴 ∈ On
109oneli 6485 . . . . . . . . 9 ((𝐴𝑥) ∈ suc 𝐴 → (𝐴𝑥) ∈ On)
11 elndif 4125 . . . . . . . . . . . 12 (∅ ∈ 𝑥 → ¬ ∅ ∈ (𝐴𝑥))
12 on0eln0 6427 . . . . . . . . . . . . . 14 ((𝐴𝑥) ∈ On → (∅ ∈ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ∅))
1312biimprd 247 . . . . . . . . . . . . 13 ((𝐴𝑥) ∈ On → ((𝐴𝑥) ≠ ∅ → ∅ ∈ (𝐴𝑥)))
1413necon1bd 2947 . . . . . . . . . . . 12 ((𝐴𝑥) ∈ On → (¬ ∅ ∈ (𝐴𝑥) → (𝐴𝑥) = ∅))
15 ssdif0 4363 . . . . . . . . . . . . 13 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
161onssneli 6487 . . . . . . . . . . . . 13 (𝐴𝑥 → ¬ 𝑥𝐴)
1715, 16sylbir 234 . . . . . . . . . . . 12 ((𝐴𝑥) = ∅ → ¬ 𝑥𝐴)
1811, 14, 17syl56 36 . . . . . . . . . . 11 ((𝐴𝑥) ∈ On → (∅ ∈ 𝑥 → ¬ 𝑥𝐴))
1918con2d 134 . . . . . . . . . 10 ((𝐴𝑥) ∈ On → (𝑥𝐴 → ¬ ∅ ∈ 𝑥))
201oneli 6485 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ On)
21 on0eln0 6427 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
2221biimprd 247 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
2320, 22syl 17 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
2423necon1bd 2947 . . . . . . . . . 10 (𝑥𝐴 → (¬ ∅ ∈ 𝑥𝑥 = ∅))
2519, 24sylcom 30 . . . . . . . . 9 ((𝐴𝑥) ∈ On → (𝑥𝐴𝑥 = ∅))
2610, 25syl 17 . . . . . . . 8 ((𝐴𝑥) ∈ suc 𝐴 → (𝑥𝐴𝑥 = ∅))
2726orim1d 963 . . . . . . 7 ((𝐴𝑥) ∈ suc 𝐴 → ((𝑥𝐴𝑥 = 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
2827impcom 406 . . . . . 6 (((𝑥𝐴𝑥 = 𝐴) ∧ (𝐴𝑥) ∈ suc 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴))
29 vex 3465 . . . . . . 7 𝑥 ∈ V
3029elpr 4654 . . . . . 6 (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))
3128, 30sylibr 233 . . . . 5 (((𝑥𝐴𝑥 = 𝐴) ∧ (𝐴𝑥) ∈ suc 𝐴) → 𝑥 ∈ {∅, 𝐴})
325, 8, 31syl2an 594 . . . 4 ((𝑥 ∈ suc 𝐴𝑥 ∈ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴})
334, 32sylbi 216 . . 3 (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴})
3433ssriv 3980 . 2 (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ⊆ {∅, 𝐴}
357isconn2 23362 . 2 (suc 𝐴 ∈ Conn ↔ (suc 𝐴 ∈ Top ∧ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ⊆ {∅, 𝐴}))
363, 34, 35mpbir2an 709 1 suc 𝐴 ∈ Conn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  cdif 3941  cin 3943  wss 3944  c0 4322  {cpr 4632   cuni 4909  Oncon0 6371  suc csuc 6373  cfv 6549  Topctop 22839  Clsdccld 22964  Conncconn 23359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-fv 6557  df-topgen 17428  df-top 22840  df-bases 22893  df-cld 22967  df-conn 23360
This theorem is referenced by:  onsucconn  36053
  Copyright terms: Public domain W3C validator