Step | Hyp | Ref
| Expression |
1 | | onsucconni.1 |
. . 3
⊢ 𝐴 ∈ On |
2 | | onsuctop 34631 |
. . 3
⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢ suc 𝐴 ∈ Top |
4 | | elin 3908 |
. . . 4
⊢ (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ↔ (𝑥 ∈ suc 𝐴 ∧ 𝑥 ∈ (Clsd‘suc 𝐴))) |
5 | | elsuci 6331 |
. . . . 5
⊢ (𝑥 ∈ suc 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴)) |
6 | 1 | onunisuci 6379 |
. . . . . . 7
⊢ ∪ suc 𝐴 = 𝐴 |
7 | 6 | eqcomi 2749 |
. . . . . 6
⊢ 𝐴 = ∪
suc 𝐴 |
8 | 7 | cldopn 22193 |
. . . . 5
⊢ (𝑥 ∈ (Clsd‘suc 𝐴) → (𝐴 ∖ 𝑥) ∈ suc 𝐴) |
9 | 1 | onsuci 7680 |
. . . . . . . . . 10
⊢ suc 𝐴 ∈ On |
10 | 9 | oneli 6373 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝑥) ∈ suc 𝐴 → (𝐴 ∖ 𝑥) ∈ On) |
11 | | elndif 4068 |
. . . . . . . . . . . 12
⊢ (∅
∈ 𝑥 → ¬
∅ ∈ (𝐴 ∖
𝑥)) |
12 | | on0eln0 6320 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∖ 𝑥) ∈ On → (∅ ∈ (𝐴 ∖ 𝑥) ↔ (𝐴 ∖ 𝑥) ≠ ∅)) |
13 | 12 | biimprd 247 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ 𝑥) ∈ On → ((𝐴 ∖ 𝑥) ≠ ∅ → ∅ ∈ (𝐴 ∖ 𝑥))) |
14 | 13 | necon1bd 2963 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∖ 𝑥) ∈ On → (¬ ∅ ∈
(𝐴 ∖ 𝑥) → (𝐴 ∖ 𝑥) = ∅)) |
15 | | ssdif0 4303 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑥 ↔ (𝐴 ∖ 𝑥) = ∅) |
16 | 1 | onssneli 6375 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝑥 → ¬ 𝑥 ∈ 𝐴) |
17 | 15, 16 | sylbir 234 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∖ 𝑥) = ∅ → ¬ 𝑥 ∈ 𝐴) |
18 | 11, 14, 17 | syl56 36 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ 𝑥) ∈ On → (∅ ∈ 𝑥 → ¬ 𝑥 ∈ 𝐴)) |
19 | 18 | con2d 134 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ 𝑥) ∈ On → (𝑥 ∈ 𝐴 → ¬ ∅ ∈ 𝑥)) |
20 | 1 | oneli 6373 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ On) |
21 | | on0eln0 6320 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → (∅
∈ 𝑥 ↔ 𝑥 ≠ ∅)) |
22 | 21 | biimprd 247 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅
∈ 𝑥)) |
23 | 20, 22 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑥 ≠ ∅ → ∅ ∈ 𝑥)) |
24 | 23 | necon1bd 2963 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (¬ ∅ ∈ 𝑥 → 𝑥 = ∅)) |
25 | 19, 24 | sylcom 30 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝑥) ∈ On → (𝑥 ∈ 𝐴 → 𝑥 = ∅)) |
26 | 10, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∖ 𝑥) ∈ suc 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 = ∅)) |
27 | 26 | orim1d 963 |
. . . . . . 7
⊢ ((𝐴 ∖ 𝑥) ∈ suc 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴))) |
28 | 27 | impcom 408 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴) ∧ (𝐴 ∖ 𝑥) ∈ suc 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴)) |
29 | | vex 3435 |
. . . . . . 7
⊢ 𝑥 ∈ V |
30 | 29 | elpr 4590 |
. . . . . 6
⊢ (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) |
31 | 28, 30 | sylibr 233 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐴) ∧ (𝐴 ∖ 𝑥) ∈ suc 𝐴) → 𝑥 ∈ {∅, 𝐴}) |
32 | 5, 8, 31 | syl2an 596 |
. . . 4
⊢ ((𝑥 ∈ suc 𝐴 ∧ 𝑥 ∈ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴}) |
33 | 4, 32 | sylbi 216 |
. . 3
⊢ (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴}) |
34 | 33 | ssriv 3930 |
. 2
⊢ (suc
𝐴 ∩ (Clsd‘suc
𝐴)) ⊆ {∅, 𝐴} |
35 | 7 | isconn2 22576 |
. 2
⊢ (suc
𝐴 ∈ Conn ↔ (suc
𝐴 ∈ Top ∧ (suc
𝐴 ∩ (Clsd‘suc
𝐴)) ⊆ {∅, 𝐴})) |
36 | 3, 34, 35 | mpbir2an 708 |
1
⊢ suc 𝐴 ∈ Conn |