Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucconni Structured version   Visualization version   GIF version

Theorem onsucconni 36439
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Hypothesis
Ref Expression
onsucconni.1 𝐴 ∈ On
Assertion
Ref Expression
onsucconni suc 𝐴 ∈ Conn

Proof of Theorem onsucconni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onsucconni.1 . . 3 𝐴 ∈ On
2 onsuctop 36435 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ Top)
31, 2ax-mp 5 . 2 suc 𝐴 ∈ Top
4 elin 3966 . . . 4 (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ (Clsd‘suc 𝐴)))
5 elsuci 6450 . . . . 5 (𝑥 ∈ suc 𝐴 → (𝑥𝐴𝑥 = 𝐴))
61onunisuci 6503 . . . . . . 7 suc 𝐴 = 𝐴
76eqcomi 2745 . . . . . 6 𝐴 = suc 𝐴
87cldopn 23040 . . . . 5 (𝑥 ∈ (Clsd‘suc 𝐴) → (𝐴𝑥) ∈ suc 𝐴)
91onsuci 7860 . . . . . . . . . 10 suc 𝐴 ∈ On
109oneli 6497 . . . . . . . . 9 ((𝐴𝑥) ∈ suc 𝐴 → (𝐴𝑥) ∈ On)
11 elndif 4132 . . . . . . . . . . . 12 (∅ ∈ 𝑥 → ¬ ∅ ∈ (𝐴𝑥))
12 on0eln0 6439 . . . . . . . . . . . . . 14 ((𝐴𝑥) ∈ On → (∅ ∈ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ∅))
1312biimprd 248 . . . . . . . . . . . . 13 ((𝐴𝑥) ∈ On → ((𝐴𝑥) ≠ ∅ → ∅ ∈ (𝐴𝑥)))
1413necon1bd 2957 . . . . . . . . . . . 12 ((𝐴𝑥) ∈ On → (¬ ∅ ∈ (𝐴𝑥) → (𝐴𝑥) = ∅))
15 ssdif0 4365 . . . . . . . . . . . . 13 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
161onssneli 6499 . . . . . . . . . . . . 13 (𝐴𝑥 → ¬ 𝑥𝐴)
1715, 16sylbir 235 . . . . . . . . . . . 12 ((𝐴𝑥) = ∅ → ¬ 𝑥𝐴)
1811, 14, 17syl56 36 . . . . . . . . . . 11 ((𝐴𝑥) ∈ On → (∅ ∈ 𝑥 → ¬ 𝑥𝐴))
1918con2d 134 . . . . . . . . . 10 ((𝐴𝑥) ∈ On → (𝑥𝐴 → ¬ ∅ ∈ 𝑥))
201oneli 6497 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ On)
21 on0eln0 6439 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
2221biimprd 248 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
2320, 22syl 17 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
2423necon1bd 2957 . . . . . . . . . 10 (𝑥𝐴 → (¬ ∅ ∈ 𝑥𝑥 = ∅))
2519, 24sylcom 30 . . . . . . . . 9 ((𝐴𝑥) ∈ On → (𝑥𝐴𝑥 = ∅))
2610, 25syl 17 . . . . . . . 8 ((𝐴𝑥) ∈ suc 𝐴 → (𝑥𝐴𝑥 = ∅))
2726orim1d 967 . . . . . . 7 ((𝐴𝑥) ∈ suc 𝐴 → ((𝑥𝐴𝑥 = 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
2827impcom 407 . . . . . 6 (((𝑥𝐴𝑥 = 𝐴) ∧ (𝐴𝑥) ∈ suc 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴))
29 vex 3483 . . . . . . 7 𝑥 ∈ V
3029elpr 4649 . . . . . 6 (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))
3128, 30sylibr 234 . . . . 5 (((𝑥𝐴𝑥 = 𝐴) ∧ (𝐴𝑥) ∈ suc 𝐴) → 𝑥 ∈ {∅, 𝐴})
325, 8, 31syl2an 596 . . . 4 ((𝑥 ∈ suc 𝐴𝑥 ∈ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴})
334, 32sylbi 217 . . 3 (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴})
3433ssriv 3986 . 2 (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ⊆ {∅, 𝐴}
357isconn2 23423 . 2 (suc 𝐴 ∈ Conn ↔ (suc 𝐴 ∈ Top ∧ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ⊆ {∅, 𝐴}))
363, 34, 35mpbir2an 711 1 suc 𝐴 ∈ Conn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2939  cdif 3947  cin 3949  wss 3950  c0 4332  {cpr 4627   cuni 4906  Oncon0 6383  suc csuc 6385  cfv 6560  Topctop 22900  Clsdccld 23025  Conncconn 23420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568  df-topgen 17489  df-top 22901  df-bases 22954  df-cld 23028  df-conn 23421
This theorem is referenced by:  onsucconn  36440
  Copyright terms: Public domain W3C validator