Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucconni Structured version   Visualization version   GIF version

Theorem onsucconni 34626
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Hypothesis
Ref Expression
onsucconni.1 𝐴 ∈ On
Assertion
Ref Expression
onsucconni suc 𝐴 ∈ Conn

Proof of Theorem onsucconni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onsucconni.1 . . 3 𝐴 ∈ On
2 onsuctop 34622 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ Top)
31, 2ax-mp 5 . 2 suc 𝐴 ∈ Top
4 elin 3903 . . . 4 (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ (Clsd‘suc 𝐴)))
5 elsuci 6332 . . . . 5 (𝑥 ∈ suc 𝐴 → (𝑥𝐴𝑥 = 𝐴))
61onunisuci 6380 . . . . . . 7 suc 𝐴 = 𝐴
76eqcomi 2747 . . . . . 6 𝐴 = suc 𝐴
87cldopn 22182 . . . . 5 (𝑥 ∈ (Clsd‘suc 𝐴) → (𝐴𝑥) ∈ suc 𝐴)
91onsuci 7685 . . . . . . . . . 10 suc 𝐴 ∈ On
109oneli 6374 . . . . . . . . 9 ((𝐴𝑥) ∈ suc 𝐴 → (𝐴𝑥) ∈ On)
11 elndif 4063 . . . . . . . . . . . 12 (∅ ∈ 𝑥 → ¬ ∅ ∈ (𝐴𝑥))
12 on0eln0 6321 . . . . . . . . . . . . . 14 ((𝐴𝑥) ∈ On → (∅ ∈ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ∅))
1312biimprd 247 . . . . . . . . . . . . 13 ((𝐴𝑥) ∈ On → ((𝐴𝑥) ≠ ∅ → ∅ ∈ (𝐴𝑥)))
1413necon1bd 2961 . . . . . . . . . . . 12 ((𝐴𝑥) ∈ On → (¬ ∅ ∈ (𝐴𝑥) → (𝐴𝑥) = ∅))
15 ssdif0 4297 . . . . . . . . . . . . 13 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
161onssneli 6376 . . . . . . . . . . . . 13 (𝐴𝑥 → ¬ 𝑥𝐴)
1715, 16sylbir 234 . . . . . . . . . . . 12 ((𝐴𝑥) = ∅ → ¬ 𝑥𝐴)
1811, 14, 17syl56 36 . . . . . . . . . . 11 ((𝐴𝑥) ∈ On → (∅ ∈ 𝑥 → ¬ 𝑥𝐴))
1918con2d 134 . . . . . . . . . 10 ((𝐴𝑥) ∈ On → (𝑥𝐴 → ¬ ∅ ∈ 𝑥))
201oneli 6374 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ On)
21 on0eln0 6321 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
2221biimprd 247 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
2320, 22syl 17 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
2423necon1bd 2961 . . . . . . . . . 10 (𝑥𝐴 → (¬ ∅ ∈ 𝑥𝑥 = ∅))
2519, 24sylcom 30 . . . . . . . . 9 ((𝐴𝑥) ∈ On → (𝑥𝐴𝑥 = ∅))
2610, 25syl 17 . . . . . . . 8 ((𝐴𝑥) ∈ suc 𝐴 → (𝑥𝐴𝑥 = ∅))
2726orim1d 963 . . . . . . 7 ((𝐴𝑥) ∈ suc 𝐴 → ((𝑥𝐴𝑥 = 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
2827impcom 408 . . . . . 6 (((𝑥𝐴𝑥 = 𝐴) ∧ (𝐴𝑥) ∈ suc 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴))
29 vex 3436 . . . . . . 7 𝑥 ∈ V
3029elpr 4584 . . . . . 6 (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))
3128, 30sylibr 233 . . . . 5 (((𝑥𝐴𝑥 = 𝐴) ∧ (𝐴𝑥) ∈ suc 𝐴) → 𝑥 ∈ {∅, 𝐴})
325, 8, 31syl2an 596 . . . 4 ((𝑥 ∈ suc 𝐴𝑥 ∈ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴})
334, 32sylbi 216 . . 3 (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴})
3433ssriv 3925 . 2 (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ⊆ {∅, 𝐴}
357isconn2 22565 . 2 (suc 𝐴 ∈ Conn ↔ (suc 𝐴 ∈ Top ∧ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ⊆ {∅, 𝐴}))
363, 34, 35mpbir2an 708 1 suc 𝐴 ∈ Conn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cdif 3884  cin 3886  wss 3887  c0 4256  {cpr 4563   cuni 4839  Oncon0 6266  suc csuc 6268  cfv 6433  Topctop 22042  Clsdccld 22167  Conncconn 22562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-topgen 17154  df-top 22043  df-bases 22096  df-cld 22170  df-conn 22563
This theorem is referenced by:  onsucconn  34627
  Copyright terms: Public domain W3C validator