Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucconni Structured version   Visualization version   GIF version

Theorem onsucconni 36420
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Hypothesis
Ref Expression
onsucconni.1 𝐴 ∈ On
Assertion
Ref Expression
onsucconni suc 𝐴 ∈ Conn

Proof of Theorem onsucconni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 onsucconni.1 . . 3 𝐴 ∈ On
2 onsuctop 36416 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ Top)
31, 2ax-mp 5 . 2 suc 𝐴 ∈ Top
4 elin 3979 . . . 4 (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ↔ (𝑥 ∈ suc 𝐴𝑥 ∈ (Clsd‘suc 𝐴)))
5 elsuci 6453 . . . . 5 (𝑥 ∈ suc 𝐴 → (𝑥𝐴𝑥 = 𝐴))
61onunisuci 6506 . . . . . . 7 suc 𝐴 = 𝐴
76eqcomi 2744 . . . . . 6 𝐴 = suc 𝐴
87cldopn 23055 . . . . 5 (𝑥 ∈ (Clsd‘suc 𝐴) → (𝐴𝑥) ∈ suc 𝐴)
91onsuci 7859 . . . . . . . . . 10 suc 𝐴 ∈ On
109oneli 6500 . . . . . . . . 9 ((𝐴𝑥) ∈ suc 𝐴 → (𝐴𝑥) ∈ On)
11 elndif 4143 . . . . . . . . . . . 12 (∅ ∈ 𝑥 → ¬ ∅ ∈ (𝐴𝑥))
12 on0eln0 6442 . . . . . . . . . . . . . 14 ((𝐴𝑥) ∈ On → (∅ ∈ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ∅))
1312biimprd 248 . . . . . . . . . . . . 13 ((𝐴𝑥) ∈ On → ((𝐴𝑥) ≠ ∅ → ∅ ∈ (𝐴𝑥)))
1413necon1bd 2956 . . . . . . . . . . . 12 ((𝐴𝑥) ∈ On → (¬ ∅ ∈ (𝐴𝑥) → (𝐴𝑥) = ∅))
15 ssdif0 4372 . . . . . . . . . . . . 13 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
161onssneli 6502 . . . . . . . . . . . . 13 (𝐴𝑥 → ¬ 𝑥𝐴)
1715, 16sylbir 235 . . . . . . . . . . . 12 ((𝐴𝑥) = ∅ → ¬ 𝑥𝐴)
1811, 14, 17syl56 36 . . . . . . . . . . 11 ((𝐴𝑥) ∈ On → (∅ ∈ 𝑥 → ¬ 𝑥𝐴))
1918con2d 134 . . . . . . . . . 10 ((𝐴𝑥) ∈ On → (𝑥𝐴 → ¬ ∅ ∈ 𝑥))
201oneli 6500 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ On)
21 on0eln0 6442 . . . . . . . . . . . . 13 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
2221biimprd 248 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
2320, 22syl 17 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
2423necon1bd 2956 . . . . . . . . . 10 (𝑥𝐴 → (¬ ∅ ∈ 𝑥𝑥 = ∅))
2519, 24sylcom 30 . . . . . . . . 9 ((𝐴𝑥) ∈ On → (𝑥𝐴𝑥 = ∅))
2610, 25syl 17 . . . . . . . 8 ((𝐴𝑥) ∈ suc 𝐴 → (𝑥𝐴𝑥 = ∅))
2726orim1d 967 . . . . . . 7 ((𝐴𝑥) ∈ suc 𝐴 → ((𝑥𝐴𝑥 = 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴)))
2827impcom 407 . . . . . 6 (((𝑥𝐴𝑥 = 𝐴) ∧ (𝐴𝑥) ∈ suc 𝐴) → (𝑥 = ∅ ∨ 𝑥 = 𝐴))
29 vex 3482 . . . . . . 7 𝑥 ∈ V
3029elpr 4655 . . . . . 6 (𝑥 ∈ {∅, 𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐴))
3128, 30sylibr 234 . . . . 5 (((𝑥𝐴𝑥 = 𝐴) ∧ (𝐴𝑥) ∈ suc 𝐴) → 𝑥 ∈ {∅, 𝐴})
325, 8, 31syl2an 596 . . . 4 ((𝑥 ∈ suc 𝐴𝑥 ∈ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴})
334, 32sylbi 217 . . 3 (𝑥 ∈ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) → 𝑥 ∈ {∅, 𝐴})
3433ssriv 3999 . 2 (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ⊆ {∅, 𝐴}
357isconn2 23438 . 2 (suc 𝐴 ∈ Conn ↔ (suc 𝐴 ∈ Top ∧ (suc 𝐴 ∩ (Clsd‘suc 𝐴)) ⊆ {∅, 𝐴}))
363, 34, 35mpbir2an 711 1 suc 𝐴 ∈ Conn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  cdif 3960  cin 3962  wss 3963  c0 4339  {cpr 4633   cuni 4912  Oncon0 6386  suc csuc 6388  cfv 6563  Topctop 22915  Clsdccld 23040  Conncconn 23435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-topgen 17490  df-top 22916  df-bases 22969  df-cld 23043  df-conn 23436
This theorem is referenced by:  onsucconn  36421
  Copyright terms: Public domain W3C validator