MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpoopabbrd Structured version   Visualization version   GIF version

Theorem mptmpoopabbrd 8078
Description: The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, to remove hypotheses; avoid ax-rep 5281. (Revised by SN, 7-Apr-2025.)
Hypotheses
Ref Expression
mptmpoopabbrd.g (𝜑𝐺𝑊)
mptmpoopabbrd.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpoopabbrd.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpoopabbrd.1 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
mptmpoopabbrd.2 (𝑔 = 𝐺 → (𝜒𝜏))
mptmpoopabbrd.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpoopabbrd (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑓,𝑔,   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝜏,𝑔   𝜃,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝜒(𝑓,𝑔,,𝑎,𝑏)   𝜃(𝑓,𝑔,)   𝜏(𝑓,,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpoopabbrd
StepHypRef Expression
1 mptmpoopabbrd.m . . . 4 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
2 fveq2 6890 . . . . 5 (𝑔 = 𝐺 → (𝐴𝑔) = (𝐴𝐺))
3 fveq2 6890 . . . . 5 (𝑔 = 𝐺 → (𝐵𝑔) = (𝐵𝐺))
4 mptmpoopabbrd.2 . . . . . . 7 (𝑔 = 𝐺 → (𝜒𝜏))
5 fveq2 6890 . . . . . . . 8 (𝑔 = 𝐺 → (𝐷𝑔) = (𝐷𝐺))
65breqd 5155 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝐷𝑔)𝑓(𝐷𝐺)))
74, 6anbi12d 630 . . . . . 6 (𝑔 = 𝐺 → ((𝜒𝑓(𝐷𝑔)) ↔ (𝜏𝑓(𝐷𝐺))))
87opabbidv 5210 . . . . 5 (𝑔 = 𝐺 → {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))} = {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
92, 3, 8mpoeq123dv 7489 . . . 4 (𝑔 = 𝐺 → (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
10 mptmpoopabbrd.g . . . . 5 (𝜑𝐺𝑊)
1110elexd 3485 . . . 4 (𝜑𝐺 ∈ V)
12 fvex 6903 . . . . . 6 (𝐴𝐺) ∈ V
13 fvex 6903 . . . . . 6 (𝐵𝐺) ∈ V
14 fvex 6903 . . . . . . 7 (𝐷𝐺) ∈ V
1514pwex 5375 . . . . . 6 𝒫 (𝐷𝐺) ∈ V
16 simpr 483 . . . . . . . . . 10 ((𝜏𝑓(𝐷𝐺)) → 𝑓(𝐷𝐺))
1716ssopab2i 5547 . . . . . . . . 9 {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} ⊆ {⟨𝑓, ⟩ ∣ 𝑓(𝐷𝐺)}
18 opabss 5208 . . . . . . . . 9 {⟨𝑓, ⟩ ∣ 𝑓(𝐷𝐺)} ⊆ (𝐷𝐺)
1917, 18sstri 3983 . . . . . . . 8 {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} ⊆ (𝐷𝐺)
2014, 19elpwi2 5344 . . . . . . 7 {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} ∈ 𝒫 (𝐷𝐺)
2120rgen2w 3056 . . . . . 6 𝑎 ∈ (𝐴𝐺)∀𝑏 ∈ (𝐵𝐺){⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} ∈ 𝒫 (𝐷𝐺)
2212, 13, 15, 21mpoexw 8076 . . . . 5 (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V
2322a1i 11 . . . 4 (𝜑 → (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V)
241, 9, 11, 23fvmptd3 7021 . . 3 (𝜑 → (𝑀𝐺) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
2524oveqd 7430 . 2 (𝜑 → (𝑋(𝑀𝐺)𝑌) = (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌))
26 mptmpoopabbrd.x . . 3 (𝜑𝑋 ∈ (𝐴𝐺))
27 mptmpoopabbrd.y . . 3 (𝜑𝑌 ∈ (𝐵𝐺))
28 mptmpoopabbrd.1 . . . . . 6 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
2928anbi1d 629 . . . . 5 ((𝑎 = 𝑋𝑏 = 𝑌) → ((𝜏𝑓(𝐷𝐺)) ↔ (𝜃𝑓(𝐷𝐺))))
3029opabbidv 5210 . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
31 eqid 2725 . . . 4 (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
32 ancom 459 . . . . . 6 ((𝜃𝑓(𝐷𝐺)) ↔ (𝑓(𝐷𝐺)𝜃))
3332opabbii 5211 . . . . 5 {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)}
34 opabresex2 7466 . . . . 5 {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)} ∈ V
3533, 34eqeltri 2821 . . . 4 {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} ∈ V
3630, 31, 35ovmpoa 7570 . . 3 ((𝑋 ∈ (𝐴𝐺) ∧ 𝑌 ∈ (𝐵𝐺)) → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3726, 27, 36syl2anc 582 . 2 (𝜑 → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3825, 37eqtrd 2765 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  𝒫 cpw 4599   class class class wbr 5144  {copab 5206  cmpt 5227  cfv 6543  (class class class)co 7413  cmpo 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988
This theorem is referenced by:  mptmpoopabovd  8080  wlkson  29509
  Copyright terms: Public domain W3C validator