MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpoopabbrd Structured version   Visualization version   GIF version

Theorem mptmpoopabbrd 7797
Description: The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
mptmpoopabbrd.g (𝜑𝐺𝑊)
mptmpoopabbrd.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpoopabbrd.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpoopabbrd.v (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
mptmpoopabbrd.r ((𝜑𝑓(𝐷𝐺)) → 𝜓)
mptmpoopabbrd.1 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
mptmpoopabbrd.2 (𝑔 = 𝐺 → (𝜒𝜏))
mptmpoopabbrd.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpoopabbrd (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑔   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝜏,𝑔   𝜃,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝜓(𝑓,𝑔,,𝑎,𝑏)   𝜒(𝑓,𝑔,,𝑎,𝑏)   𝜃(𝑓,𝑔,)   𝜏(𝑓,,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝐷(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑉(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpoopabbrd
StepHypRef Expression
1 mptmpoopabbrd.g . . . 4 (𝜑𝐺𝑊)
2 mptmpoopabbrd.m . . . . 5 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
3 fveq2 6668 . . . . . 6 (𝑔 = 𝐺 → (𝐴𝑔) = (𝐴𝐺))
4 fveq2 6668 . . . . . 6 (𝑔 = 𝐺 → (𝐵𝑔) = (𝐵𝐺))
5 mptmpoopabbrd.2 . . . . . . . 8 (𝑔 = 𝐺 → (𝜒𝜏))
6 fveq2 6668 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐷𝑔) = (𝐷𝐺))
76breqd 5038 . . . . . . . 8 (𝑔 = 𝐺 → (𝑓(𝐷𝑔)𝑓(𝐷𝐺)))
85, 7anbi12d 634 . . . . . . 7 (𝑔 = 𝐺 → ((𝜒𝑓(𝐷𝑔)) ↔ (𝜏𝑓(𝐷𝐺))))
98opabbidv 5093 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))} = {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
103, 4, 9mpoeq123dv 7237 . . . . 5 (𝑔 = 𝐺 → (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
11 elex 3415 . . . . . 6 (𝐺𝑊𝐺 ∈ V)
1211adantr 484 . . . . 5 ((𝐺𝑊𝐺𝑊) → 𝐺 ∈ V)
13 fvex 6681 . . . . . . 7 (𝐴𝐺) ∈ V
14 fvex 6681 . . . . . . 7 (𝐵𝐺) ∈ V
1513, 14pm3.2i 474 . . . . . 6 ((𝐴𝐺) ∈ V ∧ (𝐵𝐺) ∈ V)
16 mpoexga 7794 . . . . . 6 (((𝐴𝐺) ∈ V ∧ (𝐵𝐺) ∈ V) → (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V)
1715, 16mp1i 13 . . . . 5 ((𝐺𝑊𝐺𝑊) → (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V)
182, 10, 12, 17fvmptd3 6792 . . . 4 ((𝐺𝑊𝐺𝑊) → (𝑀𝐺) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
191, 1, 18syl2anc 587 . . 3 (𝜑 → (𝑀𝐺) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
2019oveqd 7181 . 2 (𝜑 → (𝑋(𝑀𝐺)𝑌) = (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌))
21 mptmpoopabbrd.x . . 3 (𝜑𝑋 ∈ (𝐴𝐺))
22 mptmpoopabbrd.y . . 3 (𝜑𝑌 ∈ (𝐵𝐺))
23 ancom 464 . . . . 5 ((𝜃𝑓(𝐷𝐺)) ↔ (𝑓(𝐷𝐺)𝜃))
2423opabbii 5094 . . . 4 {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)}
25 mptmpoopabbrd.r . . . . 5 ((𝜑𝑓(𝐷𝐺)) → 𝜓)
26 mptmpoopabbrd.v . . . . 5 (𝜑 → {⟨𝑓, ⟩ ∣ 𝜓} ∈ 𝑉)
2725, 26opabresex2d 7216 . . . 4 (𝜑 → {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)} ∈ V)
2824, 27eqeltrid 2837 . . 3 (𝜑 → {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} ∈ V)
29 mptmpoopabbrd.1 . . . . . 6 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
3029anbi1d 633 . . . . 5 ((𝑎 = 𝑋𝑏 = 𝑌) → ((𝜏𝑓(𝐷𝐺)) ↔ (𝜃𝑓(𝐷𝐺))))
3130opabbidv 5093 . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
32 eqid 2738 . . . 4 (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
3331, 32ovmpoga 7313 . . 3 ((𝑋 ∈ (𝐴𝐺) ∧ 𝑌 ∈ (𝐵𝐺) ∧ {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} ∈ V) → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3421, 22, 28, 33syl3anc 1372 . 2 (𝜑 → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3520, 34eqtrd 2773 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  Vcvv 3397   class class class wbr 5027  {copab 5089  cmpt 5107  cfv 6333  (class class class)co 7164  cmpo 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-1st 7707  df-2nd 7708
This theorem is referenced by:  mptmpoopabovd  7798  wlkson  27590
  Copyright terms: Public domain W3C validator