MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpoopabbrd Structured version   Visualization version   GIF version

Theorem mptmpoopabbrd 8018
Description: The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, to remove hypotheses; avoid ax-rep 5219. (Revised by SN, 7-Apr-2025.)
Hypotheses
Ref Expression
mptmpoopabbrd.g (𝜑𝐺𝑊)
mptmpoopabbrd.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpoopabbrd.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpoopabbrd.1 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
mptmpoopabbrd.2 (𝑔 = 𝐺 → (𝜒𝜏))
mptmpoopabbrd.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpoopabbrd (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑓,𝑔,   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝜏,𝑔   𝜃,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝜒(𝑓,𝑔,,𝑎,𝑏)   𝜃(𝑓,𝑔,)   𝜏(𝑓,,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpoopabbrd
StepHypRef Expression
1 mptmpoopabbrd.m . . . 4 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
2 fveq2 6828 . . . . 5 (𝑔 = 𝐺 → (𝐴𝑔) = (𝐴𝐺))
3 fveq2 6828 . . . . 5 (𝑔 = 𝐺 → (𝐵𝑔) = (𝐵𝐺))
4 mptmpoopabbrd.2 . . . . . . 7 (𝑔 = 𝐺 → (𝜒𝜏))
5 fveq2 6828 . . . . . . . 8 (𝑔 = 𝐺 → (𝐷𝑔) = (𝐷𝐺))
65breqd 5104 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝐷𝑔)𝑓(𝐷𝐺)))
74, 6anbi12d 632 . . . . . 6 (𝑔 = 𝐺 → ((𝜒𝑓(𝐷𝑔)) ↔ (𝜏𝑓(𝐷𝐺))))
87opabbidv 5159 . . . . 5 (𝑔 = 𝐺 → {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))} = {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
92, 3, 8mpoeq123dv 7427 . . . 4 (𝑔 = 𝐺 → (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
10 mptmpoopabbrd.g . . . . 5 (𝜑𝐺𝑊)
1110elexd 3461 . . . 4 (𝜑𝐺 ∈ V)
12 fvex 6841 . . . . . 6 (𝐴𝐺) ∈ V
13 fvex 6841 . . . . . 6 (𝐵𝐺) ∈ V
14 fvex 6841 . . . . . . 7 (𝐷𝐺) ∈ V
1514pwex 5320 . . . . . 6 𝒫 (𝐷𝐺) ∈ V
16 simpr 484 . . . . . . . . . 10 ((𝜏𝑓(𝐷𝐺)) → 𝑓(𝐷𝐺))
1716ssopab2i 5493 . . . . . . . . 9 {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} ⊆ {⟨𝑓, ⟩ ∣ 𝑓(𝐷𝐺)}
18 opabss 5157 . . . . . . . . 9 {⟨𝑓, ⟩ ∣ 𝑓(𝐷𝐺)} ⊆ (𝐷𝐺)
1917, 18sstri 3940 . . . . . . . 8 {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} ⊆ (𝐷𝐺)
2014, 19elpwi2 5275 . . . . . . 7 {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} ∈ 𝒫 (𝐷𝐺)
2120rgen2w 3053 . . . . . 6 𝑎 ∈ (𝐴𝐺)∀𝑏 ∈ (𝐵𝐺){⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} ∈ 𝒫 (𝐷𝐺)
2212, 13, 15, 21mpoexw 8016 . . . . 5 (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V
2322a1i 11 . . . 4 (𝜑 → (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V)
241, 9, 11, 23fvmptd3 6958 . . 3 (𝜑 → (𝑀𝐺) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
2524oveqd 7369 . 2 (𝜑 → (𝑋(𝑀𝐺)𝑌) = (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌))
26 mptmpoopabbrd.x . . 3 (𝜑𝑋 ∈ (𝐴𝐺))
27 mptmpoopabbrd.y . . 3 (𝜑𝑌 ∈ (𝐵𝐺))
28 mptmpoopabbrd.1 . . . . . 6 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
2928anbi1d 631 . . . . 5 ((𝑎 = 𝑋𝑏 = 𝑌) → ((𝜏𝑓(𝐷𝐺)) ↔ (𝜃𝑓(𝐷𝐺))))
3029opabbidv 5159 . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
31 eqid 2733 . . . 4 (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
32 ancom 460 . . . . . 6 ((𝜃𝑓(𝐷𝐺)) ↔ (𝑓(𝐷𝐺)𝜃))
3332opabbii 5160 . . . . 5 {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)}
34 opabresex2 7406 . . . . 5 {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)} ∈ V
3533, 34eqeltri 2829 . . . 4 {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} ∈ V
3630, 31, 35ovmpoa 7507 . . 3 ((𝑋 ∈ (𝐴𝐺) ∧ 𝑌 ∈ (𝐵𝐺)) → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3726, 27, 36syl2anc 584 . 2 (𝜑 → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3825, 37eqtrd 2768 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  𝒫 cpw 4549   class class class wbr 5093  {copab 5155  cmpt 5174  cfv 6486  (class class class)co 7352  cmpo 7354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928
This theorem is referenced by:  mptmpoopabovd  8020  wlkson  29635
  Copyright terms: Public domain W3C validator