Proof of Theorem mptmpoopabbrd
Step | Hyp | Ref
| Expression |
1 | | mptmpoopabbrd.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
2 | | mptmpoopabbrd.m |
. . . . 5
⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)})) |
3 | | fveq2 6756 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝐴‘𝑔) = (𝐴‘𝐺)) |
4 | | fveq2 6756 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝐵‘𝑔) = (𝐵‘𝐺)) |
5 | | mptmpoopabbrd.2 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝜒 ↔ 𝜏)) |
6 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝐷‘𝑔) = (𝐷‘𝐺)) |
7 | 6 | breqd 5081 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑓(𝐷‘𝑔)ℎ ↔ 𝑓(𝐷‘𝐺)ℎ)) |
8 | 5, 7 | anbi12d 630 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ) ↔ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ))) |
9 | 8 | opabbidv 5136 |
. . . . . 6
⊢ (𝑔 = 𝐺 → {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
10 | 3, 4, 9 | mpoeq123dv 7328 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)}) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})) |
11 | | elex 3440 |
. . . . . 6
⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) |
12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
13 | | fvex 6769 |
. . . . . . 7
⊢ (𝐴‘𝐺) ∈ V |
14 | | fvex 6769 |
. . . . . . 7
⊢ (𝐵‘𝐺) ∈ V |
15 | 13, 14 | pm3.2i 470 |
. . . . . 6
⊢ ((𝐴‘𝐺) ∈ V ∧ (𝐵‘𝐺) ∈ V) |
16 | | mpoexga 7891 |
. . . . . 6
⊢ (((𝐴‘𝐺) ∈ V ∧ (𝐵‘𝐺) ∈ V) → (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) ∈ V) |
17 | 15, 16 | mp1i 13 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐺 ∈ 𝑊) → (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) ∈ V) |
18 | 2, 10, 12, 17 | fvmptd3 6880 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐺 ∈ 𝑊) → (𝑀‘𝐺) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})) |
19 | 1, 1, 18 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝑀‘𝐺) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})) |
20 | 19 | oveqd 7272 |
. 2
⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌)) |
21 | | mptmpoopabbrd.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) |
22 | | mptmpoopabbrd.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) |
23 | | ancom 460 |
. . . . 5
⊢ ((𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ) ↔ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)) |
24 | 23 | opabbii 5137 |
. . . 4
⊢
{〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)} |
25 | | mptmpoopabbrd.r |
. . . . 5
⊢ ((𝜑 ∧ 𝑓(𝐷‘𝐺)ℎ) → 𝜓) |
26 | | mptmpoopabbrd.v |
. . . . 5
⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ 𝜓} ∈ 𝑉) |
27 | 25, 26 | opabresex2d 7307 |
. . . 4
⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)} ∈ V) |
28 | 24, 27 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)} ∈ V) |
29 | | mptmpoopabbrd.1 |
. . . . . 6
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝜏 ↔ 𝜃)) |
30 | 29 | anbi1d 629 |
. . . . 5
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ((𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ) ↔ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ))) |
31 | 30 | opabbidv 5136 |
. . . 4
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
32 | | eqid 2738 |
. . . 4
⊢ (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
33 | 31, 32 | ovmpoga 7405 |
. . 3
⊢ ((𝑋 ∈ (𝐴‘𝐺) ∧ 𝑌 ∈ (𝐵‘𝐺) ∧ {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)} ∈ V) → (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
34 | 21, 22, 28, 33 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
35 | 20, 34 | eqtrd 2778 |
1
⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |