Proof of Theorem mptmpoopabbrd
Step | Hyp | Ref
| Expression |
1 | | mptmpoopabbrd.m |
. . . 4
⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)})) |
2 | | fveq2 6774 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝐴‘𝑔) = (𝐴‘𝐺)) |
3 | | fveq2 6774 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝐵‘𝑔) = (𝐵‘𝐺)) |
4 | | mptmpoopabbrd.2 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝜒 ↔ 𝜏)) |
5 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝐷‘𝑔) = (𝐷‘𝐺)) |
6 | 5 | breqd 5085 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑓(𝐷‘𝑔)ℎ ↔ 𝑓(𝐷‘𝐺)ℎ)) |
7 | 4, 6 | anbi12d 631 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ) ↔ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ))) |
8 | 7 | opabbidv 5140 |
. . . . 5
⊢ (𝑔 = 𝐺 → {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
9 | 2, 3, 8 | mpoeq123dv 7350 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)}) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})) |
10 | | mptmpoopabbrd.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
11 | 10 | elexd 3452 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ V) |
12 | | fvex 6787 |
. . . . . 6
⊢ (𝐴‘𝐺) ∈ V |
13 | | fvex 6787 |
. . . . . 6
⊢ (𝐵‘𝐺) ∈ V |
14 | 12, 13 | mpoex 7920 |
. . . . 5
⊢ (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) ∈ V |
15 | 14 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) ∈ V) |
16 | 1, 9, 11, 15 | fvmptd3 6898 |
. . 3
⊢ (𝜑 → (𝑀‘𝐺) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})) |
17 | 16 | oveqd 7292 |
. 2
⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌)) |
18 | | mptmpoopabbrd.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) |
19 | | mptmpoopabbrd.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) |
20 | | mptmpoopabbrd.1 |
. . . . . 6
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝜏 ↔ 𝜃)) |
21 | 20 | anbi1d 630 |
. . . . 5
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → ((𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ) ↔ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ))) |
22 | 21 | opabbidv 5140 |
. . . 4
⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
23 | | eqid 2738 |
. . . 4
⊢ (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) = (𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
24 | | ancom 461 |
. . . . . 6
⊢ ((𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ) ↔ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)) |
25 | 24 | opabbii 5141 |
. . . . 5
⊢
{〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)} = {〈𝑓, ℎ〉 ∣ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)} |
26 | | opabresex2 7327 |
. . . . 5
⊢
{〈𝑓, ℎ〉 ∣ (𝑓(𝐷‘𝐺)ℎ ∧ 𝜃)} ∈ V |
27 | 25, 26 | eqeltri 2835 |
. . . 4
⊢
{〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)} ∈ V |
28 | 22, 23, 27 | ovmpoa 7428 |
. . 3
⊢ ((𝑋 ∈ (𝐴‘𝐺) ∧ 𝑌 ∈ (𝐵‘𝐺)) → (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
29 | 18, 19, 28 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑋(𝑎 ∈ (𝐴‘𝐺), 𝑏 ∈ (𝐵‘𝐺) ↦ {〈𝑓, ℎ〉 ∣ (𝜏 ∧ 𝑓(𝐷‘𝐺)ℎ)})𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
30 | 17, 29 | eqtrd 2778 |
1
⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) |