MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpoopabbrdOLD Structured version   Visualization version   GIF version

Theorem mptmpoopabbrdOLD 8085
Description: Obsolete version of mptmpoopabbrd 8084 as of 7-Apr-2025. (Contributed by Alexander van Vekens, 8-Nov-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mptmpoopabbrd.g (𝜑𝐺𝑊)
mptmpoopabbrd.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpoopabbrd.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpoopabbrd.1 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
mptmpoopabbrd.2 (𝑔 = 𝐺 → (𝜒𝜏))
mptmpoopabbrd.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpoopabbrdOLD (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑓,𝑔,   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝜏,𝑔   𝜃,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝜒(𝑓,𝑔,,𝑎,𝑏)   𝜃(𝑓,𝑔,)   𝜏(𝑓,,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpoopabbrdOLD
StepHypRef Expression
1 mptmpoopabbrd.m . . . 4 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}))
2 fveq2 6881 . . . . 5 (𝑔 = 𝐺 → (𝐴𝑔) = (𝐴𝐺))
3 fveq2 6881 . . . . 5 (𝑔 = 𝐺 → (𝐵𝑔) = (𝐵𝐺))
4 mptmpoopabbrd.2 . . . . . . 7 (𝑔 = 𝐺 → (𝜒𝜏))
5 fveq2 6881 . . . . . . . 8 (𝑔 = 𝐺 → (𝐷𝑔) = (𝐷𝐺))
65breqd 5135 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝐷𝑔)𝑓(𝐷𝐺)))
74, 6anbi12d 632 . . . . . 6 (𝑔 = 𝐺 → ((𝜒𝑓(𝐷𝑔)) ↔ (𝜏𝑓(𝐷𝐺))))
87opabbidv 5190 . . . . 5 (𝑔 = 𝐺 → {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))} = {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
92, 3, 8mpoeq123dv 7487 . . . 4 (𝑔 = 𝐺 → (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝜒𝑓(𝐷𝑔))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
10 mptmpoopabbrd.g . . . . 5 (𝜑𝐺𝑊)
1110elexd 3488 . . . 4 (𝜑𝐺 ∈ V)
12 fvex 6894 . . . . . 6 (𝐴𝐺) ∈ V
13 fvex 6894 . . . . . 6 (𝐵𝐺) ∈ V
1412, 13mpoex 8083 . . . . 5 (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V
1514a1i 11 . . . 4 (𝜑 → (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) ∈ V)
161, 9, 11, 15fvmptd3 7014 . . 3 (𝜑 → (𝑀𝐺) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}))
1716oveqd 7427 . 2 (𝜑 → (𝑋(𝑀𝐺)𝑌) = (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌))
18 mptmpoopabbrd.x . . 3 (𝜑𝑋 ∈ (𝐴𝐺))
19 mptmpoopabbrd.y . . 3 (𝜑𝑌 ∈ (𝐵𝐺))
20 mptmpoopabbrd.1 . . . . . 6 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝜏𝜃))
2120anbi1d 631 . . . . 5 ((𝑎 = 𝑋𝑏 = 𝑌) → ((𝜏𝑓(𝐷𝐺)) ↔ (𝜃𝑓(𝐷𝐺))))
2221opabbidv 5190 . . . 4 ((𝑎 = 𝑋𝑏 = 𝑌) → {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
23 eqid 2736 . . . 4 (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))}) = (𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})
24 ancom 460 . . . . . 6 ((𝜃𝑓(𝐷𝐺)) ↔ (𝑓(𝐷𝐺)𝜃))
2524opabbii 5191 . . . . 5 {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} = {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)}
26 opabresex2 7464 . . . . 5 {⟨𝑓, ⟩ ∣ (𝑓(𝐷𝐺)𝜃)} ∈ V
2725, 26eqeltri 2831 . . . 4 {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))} ∈ V
2822, 23, 27ovmpoa 7567 . . 3 ((𝑋 ∈ (𝐴𝐺) ∧ 𝑌 ∈ (𝐵𝐺)) → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
2918, 19, 28syl2anc 584 . 2 (𝜑 → (𝑋(𝑎 ∈ (𝐴𝐺), 𝑏 ∈ (𝐵𝐺) ↦ {⟨𝑓, ⟩ ∣ (𝜏𝑓(𝐷𝐺))})𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
3017, 29eqtrd 2771 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝜃𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464   class class class wbr 5124  {copab 5186  cmpt 5206  cfv 6536  (class class class)co 7410  cmpo 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator