MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspr2 Structured version   Visualization version   GIF version

Theorem snsspr2 4823
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
snsspr2 {𝐵} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr2
StepHypRef Expression
1 ssun2 4173 . 2 {𝐵} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 4635 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 4016 1 {𝐵} ⊆ {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:  cun 3944  wss 3946  {csn 4632  {cpr 4634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-un 3951  df-ss 3963  df-pr 4635
This theorem is referenced by:  snsstp2  4825  ord3ex  5390  ltrelxr  11321  2strop  17232  2strop1  17236  phlip  17360  prdsco  17478  ipotset  18553  gsumpr  19948  lsppratlem4  21078  ex-res  30366  subfacp1lem2a  34960  dvh3dim3N  41096  algvsca  42780  corclrcl  43311  mnuprdlem4  43886
  Copyright terms: Public domain W3C validator