MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspr2 Structured version   Visualization version   GIF version

Theorem snsspr2 4815
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
snsspr2 {𝐵} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr2
StepHypRef Expression
1 ssun2 4179 . 2 {𝐵} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 4629 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 4033 1 {𝐵} ⊆ {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:  cun 3949  wss 3951  {csn 4626  {cpr 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-un 3956  df-ss 3968  df-pr 4629
This theorem is referenced by:  snsstp2  4817  ord3ex  5387  ltrelxr  11322  2strop  17269  2strop1  17273  phlip  17395  prdsco  17513  ipotset  18578  gsumpr  19973  lsppratlem4  21152  ex-res  30460  subfacp1lem2a  35185  dvh3dim3N  41451  algvsca  43190  corclrcl  43720  mnuprdlem4  44294
  Copyright terms: Public domain W3C validator