Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsspr2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4103 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4561 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 3954 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3881 ⊆ wss 3883 {csn 4558 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pr 4561 |
This theorem is referenced by: snsstp2 4747 ord3ex 5305 ltrelxr 10967 2strop 16862 2strop1 16866 phlip 16986 prdsco 17096 ipotset 18166 gsumpr 19471 lsppratlem4 20327 ex-res 28706 subfacp1lem2a 33042 dvh3dim3N 39390 algvsca 40923 corclrcl 41204 mnuprdlem4 41782 |
Copyright terms: Public domain | W3C validator |