MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspr2 Structured version   Visualization version   GIF version

Theorem snsspr2 4769
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
snsspr2 {𝐵} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr2
StepHypRef Expression
1 ssun2 4132 . 2 {𝐵} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 4582 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 3987 1 {𝐵} ⊆ {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:  cun 3903  wss 3905  {csn 4579  {cpr 4581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-ss 3922  df-pr 4582
This theorem is referenced by:  snsstp2  4771  ord3ex  5329  ltrelxr  11195  2strop  17158  phlip  17273  prdsco  17390  ipotset  18457  gsumpr  19852  lsppratlem4  21075  ex-res  30403  subfacp1lem2a  35155  dvh3dim3N  41431  algvsca  43154  corclrcl  43683  mnuprdlem4  44251
  Copyright terms: Public domain W3C validator