| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4129 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4579 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3984 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3900 ⊆ wss 3902 {csn 4576 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-pr 4579 |
| This theorem is referenced by: snsstp2 4769 ord3ex 5325 ltrelxr 11173 2strop 17140 phlip 17255 prdsco 17372 ipotset 18439 gsumpr 19868 lsppratlem4 21088 ex-res 30419 subfacp1lem2a 35222 dvh3dim3N 41494 algvsca 43217 corclrcl 43746 mnuprdlem4 44314 |
| Copyright terms: Public domain | W3C validator |