![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsspr2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4173 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4635 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 4016 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3944 ⊆ wss 3946 {csn 4632 {cpr 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-un 3951 df-ss 3963 df-pr 4635 |
This theorem is referenced by: snsstp2 4825 ord3ex 5390 ltrelxr 11321 2strop 17232 2strop1 17236 phlip 17360 prdsco 17478 ipotset 18553 gsumpr 19948 lsppratlem4 21078 ex-res 30366 subfacp1lem2a 34960 dvh3dim3N 41096 algvsca 42780 corclrcl 43311 mnuprdlem4 43886 |
Copyright terms: Public domain | W3C validator |