![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsspr2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4189 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4634 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 4033 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3961 ⊆ wss 3963 {csn 4631 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-pr 4634 |
This theorem is referenced by: snsstp2 4822 ord3ex 5393 ltrelxr 11320 2strop 17269 2strop1 17273 phlip 17397 prdsco 17515 ipotset 18591 gsumpr 19988 lsppratlem4 21170 ex-res 30470 subfacp1lem2a 35165 dvh3dim3N 41432 algvsca 43167 corclrcl 43697 mnuprdlem4 44271 |
Copyright terms: Public domain | W3C validator |