MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspr2 Structured version   Visualization version   GIF version

Theorem snsspr2 4820
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
snsspr2 {𝐵} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr2
StepHypRef Expression
1 ssun2 4189 . 2 {𝐵} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 4634 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 4033 1 {𝐵} ⊆ {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:  cun 3961  wss 3963  {csn 4631  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980  df-pr 4634
This theorem is referenced by:  snsstp2  4822  ord3ex  5393  ltrelxr  11320  2strop  17269  2strop1  17273  phlip  17397  prdsco  17515  ipotset  18591  gsumpr  19988  lsppratlem4  21170  ex-res  30470  subfacp1lem2a  35165  dvh3dim3N  41432  algvsca  43167  corclrcl  43697  mnuprdlem4  44271
  Copyright terms: Public domain W3C validator