| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4138 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4588 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3993 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 ⊆ wss 3911 {csn 4585 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-pr 4588 |
| This theorem is referenced by: snsstp2 4777 ord3ex 5337 ltrelxr 11211 2strop 17175 phlip 17290 prdsco 17407 ipotset 18468 gsumpr 19861 lsppratlem4 21036 ex-res 30343 subfacp1lem2a 35140 dvh3dim3N 41416 algvsca 43140 corclrcl 43669 mnuprdlem4 44237 |
| Copyright terms: Public domain | W3C validator |