![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsspr2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4202 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 4651 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pr 4651 |
This theorem is referenced by: snsstp2 4842 ord3ex 5405 ltrelxr 11351 2strop 17282 2strop1 17286 phlip 17410 prdsco 17528 ipotset 18603 gsumpr 19997 lsppratlem4 21175 ex-res 30473 subfacp1lem2a 35148 dvh3dim3N 41406 algvsca 43139 corclrcl 43669 mnuprdlem4 44244 |
Copyright terms: Public domain | W3C validator |