| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4128 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4580 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3980 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3896 ⊆ wss 3898 {csn 4577 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-pr 4580 |
| This theorem is referenced by: snsstp2 4770 ord3ex 5329 ltrelxr 11184 2strop 17147 phlip 17262 prdsco 17379 ipotset 18447 gsumpr 19875 lsppratlem4 21096 ex-res 30442 esplyind 33659 subfacp1lem2a 35296 dvh3dim3N 41621 algvsca 43335 corclrcl 43864 mnuprdlem4 44432 |
| Copyright terms: Public domain | W3C validator |