| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspr2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4159 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 4609 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 4013 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3929 ⊆ wss 3931 {csn 4606 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-pr 4609 |
| This theorem is referenced by: snsstp2 4798 ord3ex 5362 ltrelxr 11301 2strop 17255 phlip 17370 prdsco 17487 ipotset 18548 gsumpr 19941 lsppratlem4 21116 ex-res 30427 subfacp1lem2a 35207 dvh3dim3N 41473 algvsca 43169 corclrcl 43698 mnuprdlem4 44266 |
| Copyright terms: Public domain | W3C validator |