MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspr2 Structured version   Visualization version   GIF version

Theorem snsspr2 4768
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
snsspr2 {𝐵} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr2
StepHypRef Expression
1 ssun2 4128 . 2 {𝐵} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 4580 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 3980 1 {𝐵} ⊆ {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:  cun 3896  wss 3898  {csn 4577  {cpr 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-ss 3915  df-pr 4580
This theorem is referenced by:  snsstp2  4770  ord3ex  5329  ltrelxr  11184  2strop  17147  phlip  17262  prdsco  17379  ipotset  18447  gsumpr  19875  lsppratlem4  21096  ex-res  30442  esplyind  33659  subfacp1lem2a  35296  dvh3dim3N  41621  algvsca  43335  corclrcl  43864  mnuprdlem4  44432
  Copyright terms: Public domain W3C validator