MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsspr2 Structured version   Visualization version   GIF version

Theorem snsspr2 4767
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
snsspr2 {𝐵} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr2
StepHypRef Expression
1 ssun2 4129 . 2 {𝐵} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 4579 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 3984 1 {𝐵} ⊆ {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:  cun 3900  wss 3902  {csn 4576  {cpr 4578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907  df-ss 3919  df-pr 4579
This theorem is referenced by:  snsstp2  4769  ord3ex  5325  ltrelxr  11173  2strop  17140  phlip  17255  prdsco  17372  ipotset  18439  gsumpr  19868  lsppratlem4  21088  ex-res  30419  subfacp1lem2a  35222  dvh3dim3N  41494  algvsca  43217  corclrcl  43746  mnuprdlem4  44314
  Copyright terms: Public domain W3C validator