MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem9 Structured version   Visualization version   GIF version

Theorem vdwlem9 16861
Description: Lemma for vdw 16866. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
vdwlem9.m (𝜑𝑀 ∈ ℕ)
vdwlem9.w (𝜑𝑊 ∈ ℕ)
vdwlem9.g (𝜑 → ∀𝑔 ∈ (𝑅m (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
vdwlem9.v (𝜑𝑉 ∈ ℕ)
vdwlem9.a (𝜑 → ∀𝑓 ∈ ((𝑅m (1...𝑊)) ↑m (1...𝑉))𝐾 MonoAP 𝑓)
vdwlem9.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem9.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
Assertion
Ref Expression
vdwlem9 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
Distinct variable groups:   𝑔,𝑛,𝑥,𝑦,𝜑   𝑥,𝑓,𝑦,𝑉   𝑓,𝑊,𝑥,𝑦   𝑓,𝑔,𝐹,𝑥,𝑦   𝑓,𝑛,𝑠,𝐾,𝑔,𝑥,𝑦   𝑓,𝑀,𝑔,𝑛,𝑥,𝑦   𝑅,𝑓,𝑔,𝑛,𝑠,𝑥,𝑦   𝑔,𝐻,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐹(𝑛,𝑠)   𝐻(𝑓,𝑛,𝑠)   𝑀(𝑠)   𝑉(𝑔,𝑛,𝑠)   𝑊(𝑔,𝑛,𝑠)

Proof of Theorem vdwlem9
Dummy variables 𝑎 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5109 . . 3 (𝑓 = 𝐹 → (𝐾 MonoAP 𝑓𝐾 MonoAP 𝐹))
2 vdwlem9.a . . 3 (𝜑 → ∀𝑓 ∈ ((𝑅m (1...𝑊)) ↑m (1...𝑉))𝐾 MonoAP 𝑓)
3 vdwlem9.v . . . . 5 (𝜑𝑉 ∈ ℕ)
4 vdwlem9.w . . . . 5 (𝜑𝑊 ∈ ℕ)
5 vdw.r . . . . 5 (𝜑𝑅 ∈ Fin)
6 vdwlem9.h . . . . 5 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
7 vdwlem9.f . . . . 5 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
83, 4, 5, 6, 7vdwlem4 16856 . . . 4 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
9 ovex 7390 . . . . 5 (𝑅m (1...𝑊)) ∈ V
10 ovex 7390 . . . . 5 (1...𝑉) ∈ V
119, 10elmap 8809 . . . 4 (𝐹 ∈ ((𝑅m (1...𝑊)) ↑m (1...𝑉)) ↔ 𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
128, 11sylibr 233 . . 3 (𝜑𝐹 ∈ ((𝑅m (1...𝑊)) ↑m (1...𝑉)))
131, 2, 12rspcdva 3582 . 2 (𝜑𝐾 MonoAP 𝐹)
14 vdwlem9.k . . . . . 6 (𝜑𝐾 ∈ (ℤ‘2))
15 eluz2nn 12809 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
1614, 15syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ)
1716nnnn0d 12473 . . . 4 (𝜑𝐾 ∈ ℕ0)
1810, 17, 8vdwmc 16850 . . 3 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑔𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔})))
19 vdwlem9.g . . . . . . . . 9 (𝜑 → ∀𝑔 ∈ (𝑅m (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
2019adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ∀𝑔 ∈ (𝑅m (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
21 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))
2216adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ)
23 simprll 777 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℕ)
24 simprlr 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑑 ∈ ℕ)
25 vdwapid1 16847 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
2622, 23, 24, 25syl3anc 1371 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
2721, 26sseldd 3945 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (𝐹 “ {𝑔}))
288ffnd 6669 . . . . . . . . . . . . 13 (𝜑𝐹 Fn (1...𝑉))
2928adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐹 Fn (1...𝑉))
30 fniniseg 7010 . . . . . . . . . . . 12 (𝐹 Fn (1...𝑉) → (𝑎 ∈ (𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔)))
3129, 30syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 ∈ (𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔)))
3227, 31mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔))
3332simprd 496 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) = 𝑔)
348adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
3532simpld 495 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (1...𝑉))
3634, 35ffvelcdmd 7036 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) ∈ (𝑅m (1...𝑊)))
3733, 36eqeltrrd 2839 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑔 ∈ (𝑅m (1...𝑊)))
38 rsp 3230 . . . . . . . 8 (∀𝑔 ∈ (𝑅m (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (𝑔 ∈ (𝑅m (1...𝑊)) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
3920, 37, 38sylc 65 . . . . . . 7 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
403adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℕ)
414adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℕ)
425adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑅 ∈ Fin)
436adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
44 vdwlem9.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
4544adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑀 ∈ ℕ)
46 ovex 7390 . . . . . . . . . . . 12 (1...𝑊) ∈ V
47 elmapg 8778 . . . . . . . . . . . 12 ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → (𝑔 ∈ (𝑅m (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅))
4842, 46, 47sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑔 ∈ (𝑅m (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅))
4937, 48mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑔:(1...𝑊)⟶𝑅)
5014adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ (ℤ‘2))
5140, 41, 42, 43, 7, 45, 49, 50, 23, 24, 21vdwlem7 16859 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
52 olc 866 . . . . . . . . . 10 ((𝐾 + 1) MonoAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))
5352a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
5451, 53jaod 857 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
55 oveq1 7364 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥 − 1) = (𝑎 − 1))
5655oveq1d 7372 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥 − 1) + 𝑉) = ((𝑎 − 1) + 𝑉))
5756oveq2d 7373 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝑎 − 1) + 𝑉)))
5857oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))
5958fveq2d 6846 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
6059mpteq2dv 5207 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6146mptex 7173 . . . . . . . . . . . . . 14 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ∈ V
6260, 7, 61fvmpt 6948 . . . . . . . . . . . . 13 (𝑎 ∈ (1...𝑉) → (𝐹𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6335, 62syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6463, 33eqtr3d 2778 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = 𝑔)
6564breq2d 5117 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ↔ (𝐾 + 1) MonoAP 𝑔))
6617adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ0)
67 peano2nn0 12453 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
6866, 67syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐾 + 1) ∈ ℕ0)
69 nnm1nn0 12454 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
7023, 69syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℕ0)
71 nn0nnaddcl 12444 . . . . . . . . . . . . 13 (((𝑎 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝑎 − 1) + 𝑉) ∈ ℕ)
7270, 40, 71syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℕ)
7341, 72nnmulcld 12206 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · ((𝑎 − 1) + 𝑉)) ∈ ℕ)
7423, 40nnaddcld 12205 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℕ)
7541, 74nnmulcld 12206 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℕ)
7675nnzd 12526 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℤ)
77 2nn 12226 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
78 nnmulcl 12177 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
7977, 3, 78sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑉) ∈ ℕ)
804, 79nnmulcld 12206 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
8180nnzd 12526 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
8281adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ ℤ)
8323nnred 12168 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℝ)
8440nnred 12168 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℝ)
85 elfzle2 13445 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...𝑉) → 𝑎𝑉)
8635, 85syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎𝑉)
8783, 84, 84, 86leadd1dd 11769 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (𝑉 + 𝑉))
8840nncnd 12169 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℂ)
89882timesd 12396 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (2 · 𝑉) = (𝑉 + 𝑉))
9087, 89breqtrrd 5133 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (2 · 𝑉))
9174nnred 12168 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℝ)
9279nnred 12168 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑉) ∈ ℝ)
9392adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (2 · 𝑉) ∈ ℝ)
9441nnred 12168 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℝ)
9541nngt0d 12202 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 0 < 𝑊)
96 lemul2 12008 . . . . . . . . . . . . . . 15 (((𝑎 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
9791, 93, 94, 95, 96syl112anc 1374 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
9890, 97mpbid 231 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
99 eluz2 12769 . . . . . . . . . . . . 13 ((𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 · (𝑎 + 𝑉))) ↔ ((𝑊 · (𝑎 + 𝑉)) ∈ ℤ ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ ∧ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
10076, 82, 98, 99syl3anbrc 1343 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 · (𝑎 + 𝑉))))
10141nncnd 12169 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℂ)
102 1cnd 11150 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 1 ∈ ℂ)
10370nn0cnd 12475 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℂ)
104103, 88addcld 11174 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℂ)
105101, 102, 104adddid 11179 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))))
106102, 103, 88addassd 11177 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (1 + ((𝑎 − 1) + 𝑉)))
107 ax-1cn 11109 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
10823nncnd 12169 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℂ)
109 pncan3 11409 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1 + (𝑎 − 1)) = 𝑎)
110107, 108, 109sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (1 + (𝑎 − 1)) = 𝑎)
111110oveq1d 7372 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (𝑎 + 𝑉))
112106, 111eqtr3d 2778 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (1 + ((𝑎 − 1) + 𝑉)) = (𝑎 + 𝑉))
113112oveq2d 7373 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = (𝑊 · (𝑎 + 𝑉)))
114101mulid1d 11172 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · 1) = 𝑊)
115114oveq1d 7372 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))
116105, 113, 1153eqtr3d 2784 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))
117116fveq2d 6846 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (ℤ‘(𝑊 · (𝑎 + 𝑉))) = (ℤ‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
118100, 117eleqtrd 2840 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
119 fvoveq1 7380 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))) = (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
120119cbvmptv 5218 . . . . . . . . . . 11 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = (𝑧 ∈ (1...𝑊) ↦ (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
12142, 68, 41, 73, 43, 118, 120vdwlem2 16854 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) → (𝐾 + 1) MonoAP 𝐻))
12265, 121sylbird 259 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (𝐾 + 1) MonoAP 𝐻))
123122orim2d 965 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12454, 123syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12539, 124mpd 15 . . . . . 6 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
126125expr 457 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
127126rexlimdvva 3205 . . . 4 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
128127exlimdv 1936 . . 3 (𝜑 → (∃𝑔𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12918, 128sylbid 239 . 2 (𝜑 → (𝐾 MonoAP 𝐹 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
13013, 129mpd 15 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910  {csn 4586  cop 4592   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  APcvdwa 16837   MonoAP cvdwm 16838   PolyAP cvdwp 16839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-hash 14231  df-vdwap 16840  df-vdwmc 16841  df-vdwpc 16842
This theorem is referenced by:  vdwlem10  16862
  Copyright terms: Public domain W3C validator