MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem9 Structured version   Visualization version   GIF version

Theorem vdwlem9 16315
Description: Lemma for vdw 16320. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝐾 MonoAP 𝑓)
vdwlem9.m (𝜑𝑀 ∈ ℕ)
vdwlem9.w (𝜑𝑊 ∈ ℕ)
vdwlem9.g (𝜑 → ∀𝑔 ∈ (𝑅m (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
vdwlem9.v (𝜑𝑉 ∈ ℕ)
vdwlem9.a (𝜑 → ∀𝑓 ∈ ((𝑅m (1...𝑊)) ↑m (1...𝑉))𝐾 MonoAP 𝑓)
vdwlem9.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem9.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
Assertion
Ref Expression
vdwlem9 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
Distinct variable groups:   𝑔,𝑛,𝑥,𝑦,𝜑   𝑥,𝑓,𝑦,𝑉   𝑓,𝑊,𝑥,𝑦   𝑓,𝑔,𝐹,𝑥,𝑦   𝑓,𝑛,𝑠,𝐾,𝑔,𝑥,𝑦   𝑓,𝑀,𝑔,𝑛,𝑥,𝑦   𝑅,𝑓,𝑔,𝑛,𝑠,𝑥,𝑦   𝑔,𝐻,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑠)   𝐹(𝑛,𝑠)   𝐻(𝑓,𝑛,𝑠)   𝑀(𝑠)   𝑉(𝑔,𝑛,𝑠)   𝑊(𝑔,𝑛,𝑠)

Proof of Theorem vdwlem9
Dummy variables 𝑎 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5034 . . 3 (𝑓 = 𝐹 → (𝐾 MonoAP 𝑓𝐾 MonoAP 𝐹))
2 vdwlem9.a . . 3 (𝜑 → ∀𝑓 ∈ ((𝑅m (1...𝑊)) ↑m (1...𝑉))𝐾 MonoAP 𝑓)
3 vdwlem9.v . . . . 5 (𝜑𝑉 ∈ ℕ)
4 vdwlem9.w . . . . 5 (𝜑𝑊 ∈ ℕ)
5 vdw.r . . . . 5 (𝜑𝑅 ∈ Fin)
6 vdwlem9.h . . . . 5 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
7 vdwlem9.f . . . . 5 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
83, 4, 5, 6, 7vdwlem4 16310 . . . 4 (𝜑𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
9 ovex 7168 . . . . 5 (𝑅m (1...𝑊)) ∈ V
10 ovex 7168 . . . . 5 (1...𝑉) ∈ V
119, 10elmap 8418 . . . 4 (𝐹 ∈ ((𝑅m (1...𝑊)) ↑m (1...𝑉)) ↔ 𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
128, 11sylibr 237 . . 3 (𝜑𝐹 ∈ ((𝑅m (1...𝑊)) ↑m (1...𝑉)))
131, 2, 12rspcdva 3573 . 2 (𝜑𝐾 MonoAP 𝐹)
14 vdwlem9.k . . . . . 6 (𝜑𝐾 ∈ (ℤ‘2))
15 eluz2nn 12272 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
1614, 15syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ)
1716nnnn0d 11943 . . . 4 (𝜑𝐾 ∈ ℕ0)
1810, 17, 8vdwmc 16304 . . 3 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑔𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔})))
19 vdwlem9.g . . . . . . . . 9 (𝜑 → ∀𝑔 ∈ (𝑅m (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
2019adantr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ∀𝑔 ∈ (𝑅m (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
21 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))
2216adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ)
23 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℕ)
24 simprlr 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑑 ∈ ℕ)
25 vdwapid1 16301 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
2622, 23, 24, 25syl3anc 1368 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
2721, 26sseldd 3916 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (𝐹 “ {𝑔}))
288ffnd 6488 . . . . . . . . . . . . 13 (𝜑𝐹 Fn (1...𝑉))
2928adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐹 Fn (1...𝑉))
30 fniniseg 6807 . . . . . . . . . . . 12 (𝐹 Fn (1...𝑉) → (𝑎 ∈ (𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔)))
3129, 30syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 ∈ (𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔)))
3227, 31mpbid 235 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 ∈ (1...𝑉) ∧ (𝐹𝑎) = 𝑔))
3332simprd 499 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) = 𝑔)
348adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐹:(1...𝑉)⟶(𝑅m (1...𝑊)))
3532simpld 498 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ (1...𝑉))
3634, 35ffvelrnd 6829 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) ∈ (𝑅m (1...𝑊)))
3733, 36eqeltrrd 2891 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑔 ∈ (𝑅m (1...𝑊)))
38 rsp 3170 . . . . . . . 8 (∀𝑔 ∈ (𝑅m (1...𝑊))(⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (𝑔 ∈ (𝑅m (1...𝑊)) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)))
3920, 37, 38sylc 65 . . . . . . 7 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))
403adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℕ)
414adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℕ)
425adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑅 ∈ Fin)
436adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
44 vdwlem9.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
4544adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑀 ∈ ℕ)
46 ovex 7168 . . . . . . . . . . . 12 (1...𝑊) ∈ V
47 elmapg 8402 . . . . . . . . . . . 12 ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → (𝑔 ∈ (𝑅m (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅))
4842, 46, 47sylancl 589 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑔 ∈ (𝑅m (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅))
4937, 48mpbid 235 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑔:(1...𝑊)⟶𝑅)
5014adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ (ℤ‘2))
5140, 41, 42, 43, 7, 45, 49, 50, 23, 24, 21vdwlem7 16313 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨𝑀, 𝐾⟩ PolyAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
52 olc 865 . . . . . . . . . 10 ((𝐾 + 1) MonoAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))
5352a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
5451, 53jaod 856 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)))
55 oveq1 7142 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥 − 1) = (𝑎 − 1))
5655oveq1d 7150 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥 − 1) + 𝑉) = ((𝑎 − 1) + 𝑉))
5756oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝑎 − 1) + 𝑉)))
5857oveq2d 7151 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))
5958fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
6059mpteq2dv 5126 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6146mptex 6963 . . . . . . . . . . . . . 14 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ∈ V
6260, 7, 61fvmpt 6745 . . . . . . . . . . . . 13 (𝑎 ∈ (1...𝑉) → (𝐹𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6335, 62syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐹𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))))
6463, 33eqtr3d 2835 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = 𝑔)
6564breq2d 5042 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ↔ (𝐾 + 1) MonoAP 𝑔))
6617adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ0)
67 peano2nn0 11925 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
6866, 67syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝐾 + 1) ∈ ℕ0)
69 nnm1nn0 11926 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
7023, 69syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℕ0)
71 nn0nnaddcl 11916 . . . . . . . . . . . . 13 (((𝑎 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝑎 − 1) + 𝑉) ∈ ℕ)
7270, 40, 71syl2anc 587 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℕ)
7341, 72nnmulcld 11678 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · ((𝑎 − 1) + 𝑉)) ∈ ℕ)
7423, 40nnaddcld 11677 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℕ)
7541, 74nnmulcld 11678 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℕ)
7675nnzd 12074 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℤ)
77 2nn 11698 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
78 nnmulcl 11649 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (2 · 𝑉) ∈ ℕ)
7977, 3, 78sylancr 590 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑉) ∈ ℕ)
804, 79nnmulcld 11678 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ)
8180nnzd 12074 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ)
8281adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ ℤ)
8323nnred 11640 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℝ)
8440nnred 11640 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℝ)
85 elfzle2 12906 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...𝑉) → 𝑎𝑉)
8635, 85syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎𝑉)
8783, 84, 84, 86leadd1dd 11243 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (𝑉 + 𝑉))
8840nncnd 11641 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑉 ∈ ℂ)
89882timesd 11868 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (2 · 𝑉) = (𝑉 + 𝑉))
9087, 89breqtrrd 5058 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (2 · 𝑉))
9174nnred 11640 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℝ)
9279nnred 11640 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝑉) ∈ ℝ)
9392adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (2 · 𝑉) ∈ ℝ)
9441nnred 11640 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℝ)
9541nngt0d 11674 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 0 < 𝑊)
96 lemul2 11482 . . . . . . . . . . . . . . 15 (((𝑎 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 < 𝑊)) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
9791, 93, 94, 95, 96syl112anc 1371 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
9890, 97mpbid 235 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))
99 eluz2 12237 . . . . . . . . . . . . 13 ((𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 · (𝑎 + 𝑉))) ↔ ((𝑊 · (𝑎 + 𝑉)) ∈ ℤ ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ ∧ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))))
10076, 82, 98, 99syl3anbrc 1340 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 · (𝑎 + 𝑉))))
10141nncnd 11641 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑊 ∈ ℂ)
102 1cnd 10625 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 1 ∈ ℂ)
10370nn0cnd 11945 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℂ)
104103, 88addcld 10649 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℂ)
105101, 102, 104adddid 10654 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))))
106102, 103, 88addassd 10652 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (1 + ((𝑎 − 1) + 𝑉)))
107 ax-1cn 10584 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
10823nncnd 11641 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → 𝑎 ∈ ℂ)
109 pncan3 10883 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (1 + (𝑎 − 1)) = 𝑎)
110107, 108, 109sylancr 590 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (1 + (𝑎 − 1)) = 𝑎)
111110oveq1d 7150 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (𝑎 + 𝑉))
112106, 111eqtr3d 2835 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (1 + ((𝑎 − 1) + 𝑉)) = (𝑎 + 𝑉))
113112oveq2d 7151 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = (𝑊 · (𝑎 + 𝑉)))
114101mulid1d 10647 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · 1) = 𝑊)
115114oveq1d 7150 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))
116105, 113, 1153eqtr3d 2841 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))
117116fveq2d 6649 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (ℤ‘(𝑊 · (𝑎 + 𝑉))) = (ℤ‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
118100, 117eleqtrd 2892 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ (ℤ‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
119 fvoveq1 7158 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))) = (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
120119cbvmptv 5133 . . . . . . . . . . 11 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = (𝑧 ∈ (1...𝑊) ↦ (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉)))))
12142, 68, 41, 73, 43, 118, 120vdwlem2 16308 . . . . . . . . . 10 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) → (𝐾 + 1) MonoAP 𝐻))
12265, 121sylbird 263 . . . . . . . . 9 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (𝐾 + 1) MonoAP 𝐻))
123122orim2d 964 . . . . . . . 8 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12454, 123syld 47 . . . . . . 7 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → ((⟨𝑀, 𝐾⟩ PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12539, 124mpd 15 . . . . . 6 ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}))) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
126125expr 460 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
127126rexlimdvva 3253 . . . 4 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
128127exlimdv 1934 . . 3 (𝜑 → (∃𝑔𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑔}) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
12918, 128sylbid 243 . 2 (𝜑 → (𝐾 MonoAP 𝐹 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)))
13013, 129mpd 15 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881  {csn 4525  cop 4531   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  APcvdwa 16291   MonoAP cvdwm 16292   PolyAP cvdwp 16293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-hash 13687  df-vdwap 16294  df-vdwmc 16295  df-vdwpc 16296
This theorem is referenced by:  vdwlem10  16316
  Copyright terms: Public domain W3C validator