| Step | Hyp | Ref
| Expression |
| 1 | | breq2 5123 |
. . 3
⊢ (𝑓 = 𝐹 → (𝐾 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝐹)) |
| 2 | | vdwlem9.a |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ ((𝑅 ↑m (1...𝑊)) ↑m (1...𝑉))𝐾 MonoAP 𝑓) |
| 3 | | vdwlem9.v |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ ℕ) |
| 4 | | vdwlem9.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ ℕ) |
| 5 | | vdw.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 6 | | vdwlem9.h |
. . . . 5
⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
| 7 | | vdwlem9.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) |
| 8 | 3, 4, 5, 6, 7 | vdwlem4 17004 |
. . . 4
⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
| 9 | | ovex 7438 |
. . . . 5
⊢ (𝑅 ↑m (1...𝑊)) ∈ V |
| 10 | | ovex 7438 |
. . . . 5
⊢
(1...𝑉) ∈
V |
| 11 | 9, 10 | elmap 8885 |
. . . 4
⊢ (𝐹 ∈ ((𝑅 ↑m (1...𝑊)) ↑m (1...𝑉)) ↔ 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
| 12 | 8, 11 | sylibr 234 |
. . 3
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↑m (1...𝑊)) ↑m (1...𝑉))) |
| 13 | 1, 2, 12 | rspcdva 3602 |
. 2
⊢ (𝜑 → 𝐾 MonoAP 𝐹) |
| 14 | | vdwlem9.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
| 15 | | eluz2nn 12898 |
. . . . . 6
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
| 16 | 14, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 17 | 16 | nnnn0d 12562 |
. . . 4
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 18 | 10, 17, 8 | vdwmc 16998 |
. . 3
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑔∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) |
| 19 | | vdwlem9.g |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑔 ∈ (𝑅 ↑m (1...𝑊))(〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
| 20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ∀𝑔 ∈ (𝑅 ↑m (1...𝑊))(〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
| 21 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔})) |
| 22 | 16 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ) |
| 23 | | simprll 778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ ℕ) |
| 24 | | simprlr 779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑑 ∈ ℕ) |
| 25 | | vdwapid1 16995 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑)) |
| 26 | 22, 23, 24, 25 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑)) |
| 27 | 21, 26 | sseldd 3959 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ (◡𝐹 “ {𝑔})) |
| 28 | 8 | ffnd 6707 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn (1...𝑉)) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐹 Fn (1...𝑉)) |
| 30 | | fniniseg 7050 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn (1...𝑉) → (𝑎 ∈ (◡𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹‘𝑎) = 𝑔))) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 ∈ (◡𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹‘𝑎) = 𝑔))) |
| 32 | 27, 31 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 ∈ (1...𝑉) ∧ (𝐹‘𝑎) = 𝑔)) |
| 33 | 32 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝐹‘𝑎) = 𝑔) |
| 34 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
| 35 | 32 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ (1...𝑉)) |
| 36 | 34, 35 | ffvelcdmd 7075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝐹‘𝑎) ∈ (𝑅 ↑m (1...𝑊))) |
| 37 | 33, 36 | eqeltrrd 2835 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑔 ∈ (𝑅 ↑m (1...𝑊))) |
| 38 | | rsp 3230 |
. . . . . . . 8
⊢
(∀𝑔 ∈
(𝑅 ↑m
(1...𝑊))(〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (𝑔 ∈ (𝑅 ↑m (1...𝑊)) → (〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) |
| 39 | 20, 37, 38 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
| 40 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑉 ∈ ℕ) |
| 41 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑊 ∈ ℕ) |
| 42 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑅 ∈ Fin) |
| 43 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
| 44 | | vdwlem9.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 45 | 44 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑀 ∈ ℕ) |
| 46 | | ovex 7438 |
. . . . . . . . . . . 12
⊢
(1...𝑊) ∈
V |
| 47 | | elmapg 8853 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → (𝑔 ∈ (𝑅 ↑m (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅)) |
| 48 | 42, 46, 47 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑔 ∈ (𝑅 ↑m (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅)) |
| 49 | 37, 48 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑔:(1...𝑊)⟶𝑅) |
| 50 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐾 ∈
(ℤ≥‘2)) |
| 51 | 40, 41, 42, 43, 7, 45, 49, 50, 23, 24, 21 | vdwlem7 17007 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (〈𝑀, 𝐾〉 PolyAP 𝑔 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))) |
| 52 | | olc 868 |
. . . . . . . . . 10
⊢ ((𝐾 + 1) MonoAP 𝑔 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)) |
| 53 | 52 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))) |
| 54 | 51, 53 | jaod 859 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))) |
| 55 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (𝑥 − 1) = (𝑎 − 1)) |
| 56 | 55 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → ((𝑥 − 1) + 𝑉) = ((𝑎 − 1) + 𝑉)) |
| 57 | 56 | oveq2d 7421 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝑎 − 1) + 𝑉))) |
| 58 | 57 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))) |
| 59 | 58 | fveq2d 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
| 60 | 59 | mpteq2dv 5215 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))) |
| 61 | 46 | mptex 7215 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ∈ V |
| 62 | 60, 7, 61 | fvmpt 6986 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (1...𝑉) → (𝐹‘𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))) |
| 63 | 35, 62 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝐹‘𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))) |
| 64 | 63, 33 | eqtr3d 2772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = 𝑔) |
| 65 | 64 | breq2d 5131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ↔ (𝐾 + 1) MonoAP 𝑔)) |
| 66 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐾 ∈
ℕ0) |
| 67 | | peano2nn0 12541 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ0
→ (𝐾 + 1) ∈
ℕ0) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝐾 + 1) ∈
ℕ0) |
| 69 | | nnm1nn0 12542 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℕ → (𝑎 − 1) ∈
ℕ0) |
| 70 | 23, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 − 1) ∈
ℕ0) |
| 71 | | nn0nnaddcl 12532 |
. . . . . . . . . . . . 13
⊢ (((𝑎 − 1) ∈
ℕ0 ∧ 𝑉
∈ ℕ) → ((𝑎
− 1) + 𝑉) ∈
ℕ) |
| 72 | 70, 40, 71 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℕ) |
| 73 | 41, 72 | nnmulcld 12293 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · ((𝑎 − 1) + 𝑉)) ∈ ℕ) |
| 74 | 23, 40 | nnaddcld 12292 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℕ) |
| 75 | 41, 74 | nnmulcld 12293 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℕ) |
| 76 | 75 | nnzd 12615 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℤ) |
| 77 | | 2nn 12313 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℕ |
| 78 | | nnmulcl 12264 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℕ ∧ 𝑉
∈ ℕ) → (2 · 𝑉) ∈ ℕ) |
| 79 | 77, 3, 78 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 · 𝑉) ∈
ℕ) |
| 80 | 4, 79 | nnmulcld 12293 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ) |
| 81 | 80 | nnzd 12615 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ) |
| 82 | 81 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ ℤ) |
| 83 | 23 | nnred 12255 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ ℝ) |
| 84 | 40 | nnred 12255 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑉 ∈ ℝ) |
| 85 | | elfzle2 13545 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (1...𝑉) → 𝑎 ≤ 𝑉) |
| 86 | 35, 85 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ≤ 𝑉) |
| 87 | 83, 84, 84, 86 | leadd1dd 11851 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (𝑉 + 𝑉)) |
| 88 | 40 | nncnd 12256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑉 ∈ ℂ) |
| 89 | 88 | 2timesd 12484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (2 · 𝑉) = (𝑉 + 𝑉)) |
| 90 | 87, 89 | breqtrrd 5147 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (2 · 𝑉)) |
| 91 | 74 | nnred 12255 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℝ) |
| 92 | 79 | nnred 12255 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 · 𝑉) ∈
ℝ) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (2 · 𝑉) ∈ ℝ) |
| 94 | 41 | nnred 12255 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑊 ∈ ℝ) |
| 95 | 41 | nngt0d 12289 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 0 < 𝑊) |
| 96 | | lemul2 12094 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 <
𝑊)) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))) |
| 97 | 91, 93, 94, 95, 96 | syl112anc 1376 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))) |
| 98 | 90, 97 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))) |
| 99 | | eluz2 12858 |
. . . . . . . . . . . . 13
⊢ ((𝑊 · (2 · 𝑉)) ∈
(ℤ≥‘(𝑊 · (𝑎 + 𝑉))) ↔ ((𝑊 · (𝑎 + 𝑉)) ∈ ℤ ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ ∧ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))) |
| 100 | 76, 82, 98, 99 | syl3anbrc 1344 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈
(ℤ≥‘(𝑊 · (𝑎 + 𝑉)))) |
| 101 | 41 | nncnd 12256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑊 ∈ ℂ) |
| 102 | | 1cnd 11230 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 1 ∈
ℂ) |
| 103 | 70 | nn0cnd 12564 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℂ) |
| 104 | 103, 88 | addcld 11254 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℂ) |
| 105 | 101, 102,
104 | adddid 11259 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉)))) |
| 106 | 102, 103,
88 | addassd 11257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (1 + ((𝑎 − 1) + 𝑉))) |
| 107 | | ax-1cn 11187 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
| 108 | 23 | nncnd 12256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ ℂ) |
| 109 | | pncan3 11490 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℂ ∧ 𝑎
∈ ℂ) → (1 + (𝑎 − 1)) = 𝑎) |
| 110 | 107, 108,
109 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (1 + (𝑎 − 1)) = 𝑎) |
| 111 | 110 | oveq1d 7420 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (𝑎 + 𝑉)) |
| 112 | 106, 111 | eqtr3d 2772 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (1 + ((𝑎 − 1) + 𝑉)) = (𝑎 + 𝑉)) |
| 113 | 112 | oveq2d 7421 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = (𝑊 · (𝑎 + 𝑉))) |
| 114 | 101 | mulridd 11252 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · 1) = 𝑊) |
| 115 | 114 | oveq1d 7420 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))) |
| 116 | 105, 113,
115 | 3eqtr3d 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))) |
| 117 | 116 | fveq2d 6880 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) →
(ℤ≥‘(𝑊 · (𝑎 + 𝑉))) = (ℤ≥‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
| 118 | 100, 117 | eleqtrd 2836 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈
(ℤ≥‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
| 119 | | fvoveq1 7428 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))) = (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
| 120 | 119 | cbvmptv 5225 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = (𝑧 ∈ (1...𝑊) ↦ (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
| 121 | 42, 68, 41, 73, 43, 118, 120 | vdwlem2 17002 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) → (𝐾 + 1) MonoAP 𝐻)) |
| 122 | 65, 121 | sylbird 260 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (𝐾 + 1) MonoAP 𝐻)) |
| 123 | 122 | orim2d 968 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
| 124 | 54, 123 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
| 125 | 39, 124 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)) |
| 126 | 125 | expr 456 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
| 127 | 126 | rexlimdvva 3198 |
. . . 4
⊢ (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
| 128 | 127 | exlimdv 1933 |
. . 3
⊢ (𝜑 → (∃𝑔∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
| 129 | 18, 128 | sylbid 240 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐹 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
| 130 | 13, 129 | mpd 15 |
1
⊢ (𝜑 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)) |