Step | Hyp | Ref
| Expression |
1 | | breq2 5074 |
. . 3
⊢ (𝑓 = 𝐹 → (𝐾 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝐹)) |
2 | | vdwlem9.a |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ ((𝑅 ↑m (1...𝑊)) ↑m (1...𝑉))𝐾 MonoAP 𝑓) |
3 | | vdwlem9.v |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ ℕ) |
4 | | vdwlem9.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ ℕ) |
5 | | vdw.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Fin) |
6 | | vdwlem9.h |
. . . . 5
⊢ (𝜑 → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
7 | | vdwlem9.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))))) |
8 | 3, 4, 5, 6, 7 | vdwlem4 16613 |
. . . 4
⊢ (𝜑 → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
9 | | ovex 7288 |
. . . . 5
⊢ (𝑅 ↑m (1...𝑊)) ∈ V |
10 | | ovex 7288 |
. . . . 5
⊢
(1...𝑉) ∈
V |
11 | 9, 10 | elmap 8617 |
. . . 4
⊢ (𝐹 ∈ ((𝑅 ↑m (1...𝑊)) ↑m (1...𝑉)) ↔ 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
12 | 8, 11 | sylibr 233 |
. . 3
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↑m (1...𝑊)) ↑m (1...𝑉))) |
13 | 1, 2, 12 | rspcdva 3554 |
. 2
⊢ (𝜑 → 𝐾 MonoAP 𝐹) |
14 | | vdwlem9.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈
(ℤ≥‘2)) |
15 | | eluz2nn 12553 |
. . . . . 6
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℕ) |
17 | 16 | nnnn0d 12223 |
. . . 4
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
18 | 10, 17, 8 | vdwmc 16607 |
. . 3
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑔∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) |
19 | | vdwlem9.g |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑔 ∈ (𝑅 ↑m (1...𝑊))(〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ∀𝑔 ∈ (𝑅 ↑m (1...𝑊))(〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
21 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔})) |
22 | 16 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐾 ∈ ℕ) |
23 | | simprll 775 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ ℕ) |
24 | | simprlr 776 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑑 ∈ ℕ) |
25 | | vdwapid1 16604 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑)) |
26 | 22, 23, 24, 25 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑)) |
27 | 21, 26 | sseldd 3918 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ (◡𝐹 “ {𝑔})) |
28 | 8 | ffnd 6585 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn (1...𝑉)) |
29 | 28 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐹 Fn (1...𝑉)) |
30 | | fniniseg 6919 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn (1...𝑉) → (𝑎 ∈ (◡𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹‘𝑎) = 𝑔))) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 ∈ (◡𝐹 “ {𝑔}) ↔ (𝑎 ∈ (1...𝑉) ∧ (𝐹‘𝑎) = 𝑔))) |
32 | 27, 31 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 ∈ (1...𝑉) ∧ (𝐹‘𝑎) = 𝑔)) |
33 | 32 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝐹‘𝑎) = 𝑔) |
34 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐹:(1...𝑉)⟶(𝑅 ↑m (1...𝑊))) |
35 | 32 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ (1...𝑉)) |
36 | 34, 35 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝐹‘𝑎) ∈ (𝑅 ↑m (1...𝑊))) |
37 | 33, 36 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑔 ∈ (𝑅 ↑m (1...𝑊))) |
38 | | rsp 3129 |
. . . . . . . 8
⊢
(∀𝑔 ∈
(𝑅 ↑m
(1...𝑊))(〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (𝑔 ∈ (𝑅 ↑m (1...𝑊)) → (〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔))) |
39 | 20, 37, 38 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔)) |
40 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑉 ∈ ℕ) |
41 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑊 ∈ ℕ) |
42 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑅 ∈ Fin) |
43 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅) |
44 | | vdwlem9.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
45 | 44 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑀 ∈ ℕ) |
46 | | ovex 7288 |
. . . . . . . . . . . 12
⊢
(1...𝑊) ∈
V |
47 | | elmapg 8586 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Fin ∧ (1...𝑊) ∈ V) → (𝑔 ∈ (𝑅 ↑m (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅)) |
48 | 42, 46, 47 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑔 ∈ (𝑅 ↑m (1...𝑊)) ↔ 𝑔:(1...𝑊)⟶𝑅)) |
49 | 37, 48 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑔:(1...𝑊)⟶𝑅) |
50 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐾 ∈
(ℤ≥‘2)) |
51 | 40, 41, 42, 43, 7, 45, 49, 50, 23, 24, 21 | vdwlem7 16616 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (〈𝑀, 𝐾〉 PolyAP 𝑔 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))) |
52 | | olc 864 |
. . . . . . . . . 10
⊢ ((𝐾 + 1) MonoAP 𝑔 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔)) |
53 | 52 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))) |
54 | 51, 53 | jaod 855 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔))) |
55 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (𝑥 − 1) = (𝑎 − 1)) |
56 | 55 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → ((𝑥 − 1) + 𝑉) = ((𝑎 − 1) + 𝑉)) |
57 | 56 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝑎 − 1) + 𝑉))) |
58 | 57 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))) |
59 | 58 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
60 | 59 | mpteq2dv 5172 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))) |
61 | 46 | mptex 7081 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ∈ V |
62 | 60, 7, 61 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (1...𝑉) → (𝐹‘𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))) |
63 | 35, 62 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝐹‘𝑎) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))))) |
64 | 63, 33 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = 𝑔) |
65 | 64 | breq2d 5082 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) ↔ (𝐾 + 1) MonoAP 𝑔)) |
66 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝐾 ∈
ℕ0) |
67 | | peano2nn0 12203 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ0
→ (𝐾 + 1) ∈
ℕ0) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝐾 + 1) ∈
ℕ0) |
69 | | nnm1nn0 12204 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℕ → (𝑎 − 1) ∈
ℕ0) |
70 | 23, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 − 1) ∈
ℕ0) |
71 | | nn0nnaddcl 12194 |
. . . . . . . . . . . . 13
⊢ (((𝑎 − 1) ∈
ℕ0 ∧ 𝑉
∈ ℕ) → ((𝑎
− 1) + 𝑉) ∈
ℕ) |
72 | 70, 40, 71 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℕ) |
73 | 41, 72 | nnmulcld 11956 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · ((𝑎 − 1) + 𝑉)) ∈ ℕ) |
74 | 23, 40 | nnaddcld 11955 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℕ) |
75 | 41, 74 | nnmulcld 11956 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℕ) |
76 | 75 | nnzd 12354 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ∈ ℤ) |
77 | | 2nn 11976 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℕ |
78 | | nnmulcl 11927 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℕ ∧ 𝑉
∈ ℕ) → (2 · 𝑉) ∈ ℕ) |
79 | 77, 3, 78 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 · 𝑉) ∈
ℕ) |
80 | 4, 79 | nnmulcld 11956 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℕ) |
81 | 80 | nnzd 12354 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊 · (2 · 𝑉)) ∈ ℤ) |
82 | 81 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈ ℤ) |
83 | 23 | nnred 11918 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ ℝ) |
84 | 40 | nnred 11918 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑉 ∈ ℝ) |
85 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (1...𝑉) → 𝑎 ≤ 𝑉) |
86 | 35, 85 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ≤ 𝑉) |
87 | 83, 84, 84, 86 | leadd1dd 11519 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (𝑉 + 𝑉)) |
88 | 40 | nncnd 11919 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑉 ∈ ℂ) |
89 | 88 | 2timesd 12146 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (2 · 𝑉) = (𝑉 + 𝑉)) |
90 | 87, 89 | breqtrrd 5098 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ≤ (2 · 𝑉)) |
91 | 74 | nnred 11918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 + 𝑉) ∈ ℝ) |
92 | 79 | nnred 11918 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 · 𝑉) ∈
ℝ) |
93 | 92 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (2 · 𝑉) ∈ ℝ) |
94 | 41 | nnred 11918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑊 ∈ ℝ) |
95 | 41 | nngt0d 11952 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 0 < 𝑊) |
96 | | lemul2 11758 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 + 𝑉) ∈ ℝ ∧ (2 · 𝑉) ∈ ℝ ∧ (𝑊 ∈ ℝ ∧ 0 <
𝑊)) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))) |
97 | 91, 93, 94, 95, 96 | syl112anc 1372 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝑎 + 𝑉) ≤ (2 · 𝑉) ↔ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))) |
98 | 90, 97 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉))) |
99 | | eluz2 12517 |
. . . . . . . . . . . . 13
⊢ ((𝑊 · (2 · 𝑉)) ∈
(ℤ≥‘(𝑊 · (𝑎 + 𝑉))) ↔ ((𝑊 · (𝑎 + 𝑉)) ∈ ℤ ∧ (𝑊 · (2 · 𝑉)) ∈ ℤ ∧ (𝑊 · (𝑎 + 𝑉)) ≤ (𝑊 · (2 · 𝑉)))) |
100 | 76, 82, 98, 99 | syl3anbrc 1341 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈
(ℤ≥‘(𝑊 · (𝑎 + 𝑉)))) |
101 | 41 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑊 ∈ ℂ) |
102 | | 1cnd 10901 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 1 ∈
ℂ) |
103 | 70 | nn0cnd 12225 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑎 − 1) ∈ ℂ) |
104 | 103, 88 | addcld 10925 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝑎 − 1) + 𝑉) ∈ ℂ) |
105 | 101, 102,
104 | adddid 10930 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉)))) |
106 | 102, 103,
88 | addassd 10928 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (1 + ((𝑎 − 1) + 𝑉))) |
107 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
108 | 23 | nncnd 11919 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → 𝑎 ∈ ℂ) |
109 | | pncan3 11159 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℂ ∧ 𝑎
∈ ℂ) → (1 + (𝑎 − 1)) = 𝑎) |
110 | 107, 108,
109 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (1 + (𝑎 − 1)) = 𝑎) |
111 | 110 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((1 + (𝑎 − 1)) + 𝑉) = (𝑎 + 𝑉)) |
112 | 106, 111 | eqtr3d 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (1 + ((𝑎 − 1) + 𝑉)) = (𝑎 + 𝑉)) |
113 | 112 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (1 + ((𝑎 − 1) + 𝑉))) = (𝑊 · (𝑎 + 𝑉))) |
114 | 101 | mulid1d 10923 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · 1) = 𝑊) |
115 | 114 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝑊 · 1) + (𝑊 · ((𝑎 − 1) + 𝑉))) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))) |
116 | 105, 113,
115 | 3eqtr3d 2786 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (𝑎 + 𝑉)) = (𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉)))) |
117 | 116 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) →
(ℤ≥‘(𝑊 · (𝑎 + 𝑉))) = (ℤ≥‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
118 | 100, 117 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (𝑊 · (2 · 𝑉)) ∈
(ℤ≥‘(𝑊 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
119 | | fvoveq1 7278 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉)))) = (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
120 | 119 | cbvmptv 5183 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) = (𝑧 ∈ (1...𝑊) ↦ (𝐻‘(𝑧 + (𝑊 · ((𝑎 − 1) + 𝑉))))) |
121 | 42, 68, 41, 73, 43, 118, 120 | vdwlem2 16611 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑎 − 1) + 𝑉))))) → (𝐾 + 1) MonoAP 𝐻)) |
122 | 65, 121 | sylbird 259 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((𝐾 + 1) MonoAP 𝑔 → (𝐾 + 1) MonoAP 𝐻)) |
123 | 122 | orim2d 963 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝑔) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
124 | 54, 123 | syld 47 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → ((〈𝑀, 𝐾〉 PolyAP 𝑔 ∨ (𝐾 + 1) MonoAP 𝑔) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
125 | 39, 124 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}))) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)) |
126 | 125 | expr 456 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
127 | 126 | rexlimdvva 3222 |
. . . 4
⊢ (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
128 | 127 | exlimdv 1937 |
. . 3
⊢ (𝜑 → (∃𝑔∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑔}) → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
129 | 18, 128 | sylbid 239 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐹 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻))) |
130 | 13, 129 | mpd 15 |
1
⊢ (𝜑 → (〈(𝑀 + 1), 𝐾〉 PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐻)) |