MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nneo Structured version   Visualization version   GIF version

Theorem nneo 12727
Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
nneo (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneo
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 12305 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21nncnd 12309 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
3 2cn 12368 . . . . . 6 2 ∈ ℂ
43a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5 2ne0 12397 . . . . . 6 2 ≠ 0
65a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ≠ 0)
72, 4, 6divcan2d 12072 . . . 4 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1))
8 nncn 12301 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
98, 4, 6divcan2d 12072 . . . . 5 (𝑁 ∈ ℕ → (2 · (𝑁 / 2)) = 𝑁)
109oveq1d 7463 . . . 4 (𝑁 ∈ ℕ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1))
117, 10eqtr4d 2783 . . 3 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1))
12 nnz 12660 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
13 nnz 12660 . . . . . 6 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
14 zneo 12726 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1512, 13, 14syl2an 595 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1615expcom 413 . . . 4 ((𝑁 / 2) ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)))
1716necon2bd 2962 . . 3 ((𝑁 / 2) ∈ ℕ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1811, 17syl5com 31 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
19 oveq1 7455 . . . . . . 7 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
2019oveq1d 7463 . . . . . 6 (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2))
2120eleq1d 2829 . . . . 5 (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((1 + 1) / 2) ∈ ℕ))
22 oveq1 7455 . . . . . 6 (𝑗 = 1 → (𝑗 / 2) = (1 / 2))
2322eleq1d 2829 . . . . 5 (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈ ℕ))
2421, 23orbi12d 917 . . . 4 (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)))
25 oveq1 7455 . . . . . . 7 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
2625oveq1d 7463 . . . . . 6 (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2))
2726eleq1d 2829 . . . . 5 (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
28 oveq1 7455 . . . . . 6 (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2))
2928eleq1d 2829 . . . . 5 (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈ ℕ))
3027, 29orbi12d 917 . . . 4 (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ)))
31 oveq1 7455 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
3231oveq1d 7463 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2))
3332eleq1d 2829 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈ ℕ))
34 oveq1 7455 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2))
3534eleq1d 2829 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
3633, 35orbi12d 917 . . . 4 (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
37 oveq1 7455 . . . . . . 7 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
3837oveq1d 7463 . . . . . 6 (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2))
3938eleq1d 2829 . . . . 5 (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
40 oveq1 7455 . . . . . 6 (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2))
4140eleq1d 2829 . . . . 5 (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
4239, 41orbi12d 917 . . . 4 (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)))
43 df-2 12356 . . . . . . . 8 2 = (1 + 1)
4443oveq1i 7458 . . . . . . 7 (2 / 2) = ((1 + 1) / 2)
45 2div2e1 12434 . . . . . . 7 (2 / 2) = 1
4644, 45eqtr3i 2770 . . . . . 6 ((1 + 1) / 2) = 1
47 1nn 12304 . . . . . 6 1 ∈ ℕ
4846, 47eqeltri 2840 . . . . 5 ((1 + 1) / 2) ∈ ℕ
4948orci 864 . . . 4 (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)
50 peano2nn 12305 . . . . . . 7 ((𝑘 / 2) ∈ ℕ → ((𝑘 / 2) + 1) ∈ ℕ)
51 nncn 12301 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
52 add1p1 12544 . . . . . . . . . . 11 (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2))
5352oveq1d 7463 . . . . . . . . . 10 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2))
54 2cnne0 12503 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
55 divdir 11974 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
563, 54, 55mp3an23 1453 . . . . . . . . . . 11 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
5745oveq2i 7459 . . . . . . . . . . 11 ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1)
5856, 57eqtrdi 2796 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1))
5953, 58eqtrd 2780 . . . . . . . . 9 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
6051, 59syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
6160eleq1d 2829 . . . . . . 7 (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ↔ ((𝑘 / 2) + 1) ∈ ℕ))
6250, 61imbitrrid 246 . . . . . 6 (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ → (((𝑘 + 1) + 1) / 2) ∈ ℕ))
6362orim2d 967 . . . . 5 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → (((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ)))
64 orcom 869 . . . . 5 ((((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ))
6563, 64imbitrdi 251 . . . 4 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
6624, 30, 36, 42, 49, 65nnind 12311 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
6766ord 863 . 2 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
6818, 67impbid 212 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   / cdiv 11947  cn 12293  2c2 12348  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640
This theorem is referenced by:  nneoi  12728  zeo  12729  ovolunlem1a  25550  ovolunlem1  25551  nneop  48260  nnolog2flm1  48324
  Copyright terms: Public domain W3C validator