MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nneo Structured version   Visualization version   GIF version

Theorem nneo 12567
Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
nneo (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneo
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 12148 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21nncnd 12152 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
3 2cn 12211 . . . . . 6 2 ∈ ℂ
43a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5 2ne0 12240 . . . . . 6 2 ≠ 0
65a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ≠ 0)
72, 4, 6divcan2d 11910 . . . 4 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = (𝑁 + 1))
8 nncn 12144 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
98, 4, 6divcan2d 11910 . . . . 5 (𝑁 ∈ ℕ → (2 · (𝑁 / 2)) = 𝑁)
109oveq1d 7370 . . . 4 (𝑁 ∈ ℕ → ((2 · (𝑁 / 2)) + 1) = (𝑁 + 1))
117, 10eqtr4d 2771 . . 3 (𝑁 ∈ ℕ → (2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1))
12 nnz 12500 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
13 nnz 12500 . . . . . 6 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
14 zneo 12566 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1512, 13, 14syl2an 596 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1))
1615expcom 413 . . . 4 ((𝑁 / 2) ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ → (2 · ((𝑁 + 1) / 2)) ≠ ((2 · (𝑁 / 2)) + 1)))
1716necon2bd 2945 . . 3 ((𝑁 / 2) ∈ ℕ → ((2 · ((𝑁 + 1) / 2)) = ((2 · (𝑁 / 2)) + 1) → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
1811, 17syl5com 31 . 2 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ → ¬ ((𝑁 + 1) / 2) ∈ ℕ))
19 oveq1 7362 . . . . . . 7 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
2019oveq1d 7370 . . . . . 6 (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2))
2120eleq1d 2818 . . . . 5 (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((1 + 1) / 2) ∈ ℕ))
22 oveq1 7362 . . . . . 6 (𝑗 = 1 → (𝑗 / 2) = (1 / 2))
2322eleq1d 2818 . . . . 5 (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈ ℕ))
2421, 23orbi12d 918 . . . 4 (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)))
25 oveq1 7362 . . . . . . 7 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
2625oveq1d 7370 . . . . . 6 (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2))
2726eleq1d 2818 . . . . 5 (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
28 oveq1 7362 . . . . . 6 (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2))
2928eleq1d 2818 . . . . 5 (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈ ℕ))
3027, 29orbi12d 918 . . . 4 (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ)))
31 oveq1 7362 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
3231oveq1d 7370 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2))
3332eleq1d 2818 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈ ℕ))
34 oveq1 7362 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2))
3534eleq1d 2818 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
3633, 35orbi12d 918 . . . 4 (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
37 oveq1 7362 . . . . . . 7 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
3837oveq1d 7370 . . . . . 6 (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2))
3938eleq1d 2818 . . . . 5 (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
40 oveq1 7362 . . . . . 6 (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2))
4140eleq1d 2818 . . . . 5 (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
4239, 41orbi12d 918 . . . 4 (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)))
43 df-2 12199 . . . . . . . 8 2 = (1 + 1)
4443oveq1i 7365 . . . . . . 7 (2 / 2) = ((1 + 1) / 2)
45 2div2e1 12272 . . . . . . 7 (2 / 2) = 1
4644, 45eqtr3i 2758 . . . . . 6 ((1 + 1) / 2) = 1
47 1nn 12147 . . . . . 6 1 ∈ ℕ
4846, 47eqeltri 2829 . . . . 5 ((1 + 1) / 2) ∈ ℕ
4948orci 865 . . . 4 (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)
50 peano2nn 12148 . . . . . . 7 ((𝑘 / 2) ∈ ℕ → ((𝑘 / 2) + 1) ∈ ℕ)
51 nncn 12144 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
52 add1p1 12383 . . . . . . . . . . 11 (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2))
5352oveq1d 7370 . . . . . . . . . 10 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2))
54 2cnne0 12341 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
55 divdir 11812 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
563, 54, 55mp3an23 1455 . . . . . . . . . . 11 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
5745oveq2i 7366 . . . . . . . . . . 11 ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1)
5856, 57eqtrdi 2784 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1))
5953, 58eqtrd 2768 . . . . . . . . 9 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
6051, 59syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
6160eleq1d 2818 . . . . . . 7 (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ↔ ((𝑘 / 2) + 1) ∈ ℕ))
6250, 61imbitrrid 246 . . . . . 6 (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ → (((𝑘 + 1) + 1) / 2) ∈ ℕ))
6362orim2d 968 . . . . 5 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → (((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ)))
64 orcom 870 . . . . 5 ((((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ))
6563, 64imbitrdi 251 . . . 4 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
6624, 30, 36, 42, 49, 65nnind 12154 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
6766ord 864 . 2 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ))
6818, 67impbid 212 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7355  cc 11015  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022   / cdiv 11785  cn 12136  2c2 12191  cz 12479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480
This theorem is referenced by:  nneoi  12568  zeo  12569  ovolunlem1a  25444  ovolunlem1  25445  nneop  48688  nnolog2flm1  48752
  Copyright terms: Public domain W3C validator