Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss2 Structured version   Visualization version   GIF version

Theorem paddss2 39775
Description: Subset law for projective subspace sum. (unss2 4210 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss2 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌)))

Proof of Theorem paddss2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 4002 . . . . . . 7 (𝑋𝑌 → (𝑝𝑋𝑝𝑌))
21orim2d 967 . . . . . 6 (𝑋𝑌 → ((𝑝𝑍𝑝𝑋) → (𝑝𝑍𝑝𝑌)))
3 ssrexv 4078 . . . . . . . 8 (𝑋𝑌 → (∃𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
43reximdv 3176 . . . . . . 7 (𝑋𝑌 → (∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
54anim2d 611 . . . . . 6 (𝑋𝑌 → ((𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
62, 5orim12d 965 . . . . 5 (𝑋𝑌 → (((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
76adantl 481 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
8 simpl1 1191 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝐾𝐵)
9 simpl3 1193 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑍𝐴)
10 sstr 4017 . . . . . . 7 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
11103ad2antr2 1189 . . . . . 6 ((𝑋𝑌 ∧ (𝐾𝐵𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
1211ancoms 458 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑋𝐴)
13 eqid 2740 . . . . . 6 (le‘𝐾) = (le‘𝐾)
14 eqid 2740 . . . . . 6 (join‘𝐾) = (join‘𝐾)
15 padd0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
16 padd0.p . . . . . 6 + = (+𝑃𝐾)
1713, 14, 15, 16elpadd 39756 . . . . 5 ((𝐾𝐵𝑍𝐴𝑋𝐴) → (𝑝 ∈ (𝑍 + 𝑋) ↔ ((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
188, 9, 12, 17syl3anc 1371 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑋) ↔ ((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
19 simpl2 1192 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑌𝐴)
2013, 14, 15, 16elpadd 39756 . . . . 5 ((𝐾𝐵𝑍𝐴𝑌𝐴) → (𝑝 ∈ (𝑍 + 𝑌) ↔ ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
218, 9, 19, 20syl3anc 1371 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑌) ↔ ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
227, 18, 213imtr4d 294 . . 3 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑋) → 𝑝 ∈ (𝑍 + 𝑌)))
2322ssrdv 4014 . 2 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌))
2423ex 412 1 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  Atomscatm 39219  +𝑃cpadd 39752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-padd 39753
This theorem is referenced by:  paddss12  39776  pmod1i  39805
  Copyright terms: Public domain W3C validator