Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss2 Structured version   Visualization version   GIF version

Theorem paddss2 38678
Description: Subset law for projective subspace sum. (unss2 4181 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss2 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌)))

Proof of Theorem paddss2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3975 . . . . . . 7 (𝑋𝑌 → (𝑝𝑋𝑝𝑌))
21orim2d 966 . . . . . 6 (𝑋𝑌 → ((𝑝𝑍𝑝𝑋) → (𝑝𝑍𝑝𝑌)))
3 ssrexv 4051 . . . . . . . 8 (𝑋𝑌 → (∃𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
43reximdv 3171 . . . . . . 7 (𝑋𝑌 → (∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
54anim2d 613 . . . . . 6 (𝑋𝑌 → ((𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
62, 5orim12d 964 . . . . 5 (𝑋𝑌 → (((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
76adantl 483 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
8 simpl1 1192 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝐾𝐵)
9 simpl3 1194 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑍𝐴)
10 sstr 3990 . . . . . . 7 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
11103ad2antr2 1190 . . . . . 6 ((𝑋𝑌 ∧ (𝐾𝐵𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
1211ancoms 460 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑋𝐴)
13 eqid 2733 . . . . . 6 (le‘𝐾) = (le‘𝐾)
14 eqid 2733 . . . . . 6 (join‘𝐾) = (join‘𝐾)
15 padd0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
16 padd0.p . . . . . 6 + = (+𝑃𝐾)
1713, 14, 15, 16elpadd 38659 . . . . 5 ((𝐾𝐵𝑍𝐴𝑋𝐴) → (𝑝 ∈ (𝑍 + 𝑋) ↔ ((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
188, 9, 12, 17syl3anc 1372 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑋) ↔ ((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
19 simpl2 1193 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑌𝐴)
2013, 14, 15, 16elpadd 38659 . . . . 5 ((𝐾𝐵𝑍𝐴𝑌𝐴) → (𝑝 ∈ (𝑍 + 𝑌) ↔ ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
218, 9, 19, 20syl3anc 1372 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑌) ↔ ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
227, 18, 213imtr4d 294 . . 3 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑋) → 𝑝 ∈ (𝑍 + 𝑌)))
2322ssrdv 3988 . 2 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌))
2423ex 414 1 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  wss 3948   class class class wbr 5148  cfv 6541  (class class class)co 7406  lecple 17201  joincjn 18261  Atomscatm 38122  +𝑃cpadd 38655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-1st 7972  df-2nd 7973  df-padd 38656
This theorem is referenced by:  paddss12  38679  pmod1i  38708
  Copyright terms: Public domain W3C validator