MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem5 Structured version   Visualization version   GIF version

Theorem aalioulem5 26242
Description: Lemma for aaliou 26244. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem5 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞   𝑥,𝑁
Allowed substitution hints:   𝑁(𝑞,𝑝)

Proof of Theorem aalioulem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem4 26241 . 2 (𝜑 → ∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7 simpr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
8 1rp 12897 . . . . 5 1 ∈ ℝ+
9 ifcl 4522 . . . . 5 ((𝑎 ∈ ℝ+ ∧ 1 ∈ ℝ+) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
107, 8, 9sylancl 586 . . . 4 ((𝜑𝑎 ∈ ℝ+) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
1110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
12 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
1312nnrpd 12935 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
143ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
1514nnzd 12498 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
1613, 15rpexpcld 14154 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
1711, 16rpdivcld 12954 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ+)
1817rpred 12937 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ)
19 1re 11115 . . . . . . . . . . . 12 1 ∈ ℝ
2019a1i 11 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ∈ ℝ)
214ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
22 znq 12853 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
23 qre 12854 . . . . . . . . . . . . . . . 16 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
2524adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
2621, 25resubcld 11548 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
2726recnd 11143 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
2827abscld 15346 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
2918, 20, 283jca 1128 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3029adantr 480 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3116rprecred 12948 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 / (𝑞𝑁)) ∈ ℝ)
3211rpred 12937 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ)
33 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+)
3433rpred 12937 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ)
35 min2 13092 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 1)
3634, 19, 35sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 1)
3732, 20, 16, 36lediv1dd 12995 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (1 / (𝑞𝑁)))
3814nnnn0d 12445 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
3912, 38nnexpcld 14152 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℕ)
40 1nn 12139 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
4140a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ∈ ℕ)
4239, 41nnmulcld 12181 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑞𝑁) · 1) ∈ ℕ)
4342nnge1d 12176 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ ((𝑞𝑁) · 1))
4420, 20, 16ledivmuld 12990 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((1 / (𝑞𝑁)) ≤ 1 ↔ 1 ≤ ((𝑞𝑁) · 1)))
4543, 44mpbird 257 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 / (𝑞𝑁)) ≤ 1)
4618, 31, 20, 37, 45letrd 11273 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1)
4746adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1)
48 ltle 11204 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (1 < (abs‘(𝐴 − (𝑝 / 𝑞))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4919, 28, 48sylancr 587 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 < (abs‘(𝐴 − (𝑝 / 𝑞))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
5049imp 406 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5147, 50jca 511 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
52 letr 11210 . . . . . . . . 9 (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
5330, 51, 52sylc 65 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5453olcd 874 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
55542a1d 26 . . . . . 6 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
56 pm3.21 471 . . . . . . . 8 ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)))
5756adantl 481 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)))
5833, 16rpdivcld 12954 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ+)
5958rpred 12937 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ)
6018, 59, 283jca 1128 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
6160adantr 480 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
62 min1 13091 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 𝑎)
6334, 19, 62sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 𝑎)
6432, 34, 16, 63lediv1dd 12995 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)))
6564anim1i 615 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
66 letr 11210 . . . . . . . . . . 11 (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6761, 65, 66sylc 65 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
6867ex 412 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6968adantr 480 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7069orim2d 968 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7157, 70imim12d 81 . . . . . 6 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7255, 71, 20, 28ltlecasei 11224 . . . . 5 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7372ralimdvva 3176 . . . 4 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
74 oveq1 7356 . . . . . . . . 9 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (𝑥 / (𝑞𝑁)) = (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)))
7574breq1d 5102 . . . . . . . 8 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → ((𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7675orbi2d 915 . . . . . . 7 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7776imbi2d 340 . . . . . 6 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ↔ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
78772ralbidv 3193 . . . . 5 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7978rspcev 3577 . . . 4 ((if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8010, 73, 79syl6an 684 . . 3 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
8180rexlimdva 3130 . 2 (𝜑 → (∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
826, 81mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  cz 12471  cq 12849  +crp 12893  cexp 13968  abscabs 15141  Polycply 26087  degcdgr 26090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-0p 25569  df-limc 25765  df-dv 25766  df-dvn 25767  df-cpn 25768  df-ply 26091  df-coe 26093  df-dgr 26094
This theorem is referenced by:  aalioulem6  26243
  Copyright terms: Public domain W3C validator