MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem5 Structured version   Visualization version   GIF version

Theorem aalioulem5 26378
Description: Lemma for aaliou 26380. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem5 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞   𝑥,𝑁
Allowed substitution hints:   𝑁(𝑞,𝑝)

Proof of Theorem aalioulem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem4 26377 . 2 (𝜑 → ∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7 simpr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
8 1rp 13038 . . . . 5 1 ∈ ℝ+
9 ifcl 4571 . . . . 5 ((𝑎 ∈ ℝ+ ∧ 1 ∈ ℝ+) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
107, 8, 9sylancl 586 . . . 4 ((𝜑𝑎 ∈ ℝ+) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
1110adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+)
12 simprr 773 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
1312nnrpd 13075 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
143ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
1514nnzd 12640 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
1613, 15rpexpcld 14286 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
1711, 16rpdivcld 13094 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ+)
1817rpred 13077 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ)
19 1re 11261 . . . . . . . . . . . 12 1 ∈ ℝ
2019a1i 11 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ∈ ℝ)
214ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
22 znq 12994 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
23 qre 12995 . . . . . . . . . . . . . . . 16 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
2524adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
2621, 25resubcld 11691 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
2726recnd 11289 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
2827abscld 15475 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
2918, 20, 283jca 1129 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3029adantr 480 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3116rprecred 13088 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 / (𝑞𝑁)) ∈ ℝ)
3211rpred 13077 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ)
33 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+)
3433rpred 13077 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ)
35 min2 13232 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 1)
3634, 19, 35sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 1)
3732, 20, 16, 36lediv1dd 13135 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (1 / (𝑞𝑁)))
3814nnnn0d 12587 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
3912, 38nnexpcld 14284 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℕ)
40 1nn 12277 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
4140a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ∈ ℕ)
4239, 41nnmulcld 12319 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑞𝑁) · 1) ∈ ℕ)
4342nnge1d 12314 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ ((𝑞𝑁) · 1))
4420, 20, 16ledivmuld 13130 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((1 / (𝑞𝑁)) ≤ 1 ↔ 1 ≤ ((𝑞𝑁) · 1)))
4543, 44mpbird 257 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 / (𝑞𝑁)) ≤ 1)
4618, 31, 20, 37, 45letrd 11418 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1)
4746adantr 480 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1)
48 ltle 11349 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (1 < (abs‘(𝐴 − (𝑝 / 𝑞))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4919, 28, 48sylancr 587 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 < (abs‘(𝐴 − (𝑝 / 𝑞))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
5049imp 406 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5147, 50jca 511 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
52 letr 11355 . . . . . . . . 9 (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ 1 ∧ 1 ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
5330, 51, 52sylc 65 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5453olcd 875 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
55542a1d 26 . . . . . 6 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ 1 < (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
56 pm3.21 471 . . . . . . . 8 ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)))
5756adantl 481 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)))
5833, 16rpdivcld 13094 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ+)
5958rpred 13077 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ)
6018, 59, 283jca 1129 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
6160adantr 480 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
62 min1 13231 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 1 ∈ ℝ) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 𝑎)
6334, 19, 62sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎 ≤ 1, 𝑎, 1) ≤ 𝑎)
6432, 34, 16, 63lediv1dd 13135 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)))
6564anim1i 615 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
66 letr 11355 . . . . . . . . . . 11 (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6761, 65, 66sylc 65 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
6867ex 412 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6968adantr 480 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7069orim2d 969 . . . . . . 7 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7157, 70imim12d 81 . . . . . 6 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7255, 71, 20, 28ltlecasei 11369 . . . . 5 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7372ralimdvva 3206 . . . 4 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
74 oveq1 7438 . . . . . . . . 9 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (𝑥 / (𝑞𝑁)) = (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)))
7574breq1d 5153 . . . . . . . 8 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → ((𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7675orbi2d 916 . . . . . . 7 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7776imbi2d 340 . . . . . 6 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ↔ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
78772ralbidv 3221 . . . . 5 (𝑥 = if(𝑎 ≤ 1, 𝑎, 1) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
7978rspcev 3622 . . . 4 ((if(𝑎 ≤ 1, 𝑎, 1) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎 ≤ 1, 𝑎, 1) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8010, 73, 79syl6an 684 . . 3 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
8180rexlimdva 3155 . 2 (𝜑 → (∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
826, 81mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  ifcif 4525   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  cz 12613  cq 12990  +crp 13034  cexp 14102  abscabs 15273  Polycply 26223  degcdgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-0p 25705  df-limc 25901  df-dv 25902  df-dvn 25903  df-cpn 25904  df-ply 26227  df-coe 26229  df-dgr 26230
This theorem is referenced by:  aalioulem6  26379
  Copyright terms: Public domain W3C validator