Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjpreima Structured version   Visualization version   GIF version

Theorem disjpreima 32082
Description: A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
disjpreima ((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjpreima
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inpreima 7064 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)))
2 imaeq2 6054 . . . . . . . . . 10 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = (𝐹 “ ∅))
3 ima0 6075 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
42, 3eqtrdi 2786 . . . . . . . . 9 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = ∅)
51, 4sylan9req 2791 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅)
65ex 411 . . . . . . 7 (Fun 𝐹 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅))
7 csbima12 6077 . . . . . . . . . 10 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
8 csbconstg 3911 . . . . . . . . . . . 12 (𝑦 ∈ V → 𝑦 / 𝑥𝐹 = 𝐹)
98elv 3478 . . . . . . . . . . 11 𝑦 / 𝑥𝐹 = 𝐹
109imaeq1i 6055 . . . . . . . . . 10 (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐹𝑦 / 𝑥𝐵)
117, 10eqtri 2758 . . . . . . . . 9 𝑦 / 𝑥(𝐹𝐵) = (𝐹𝑦 / 𝑥𝐵)
12 csbima12 6077 . . . . . . . . . 10 𝑧 / 𝑥(𝐹𝐵) = (𝑧 / 𝑥𝐹𝑧 / 𝑥𝐵)
13 csbconstg 3911 . . . . . . . . . . . 12 (𝑧 ∈ V → 𝑧 / 𝑥𝐹 = 𝐹)
1413elv 3478 . . . . . . . . . . 11 𝑧 / 𝑥𝐹 = 𝐹
1514imaeq1i 6055 . . . . . . . . . 10 (𝑧 / 𝑥𝐹𝑧 / 𝑥𝐵) = (𝐹𝑧 / 𝑥𝐵)
1612, 15eqtri 2758 . . . . . . . . 9 𝑧 / 𝑥(𝐹𝐵) = (𝐹𝑧 / 𝑥𝐵)
1711, 16ineq12i 4209 . . . . . . . 8 (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵))
1817eqeq1i 2735 . . . . . . 7 ((𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅ ↔ ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅)
196, 18imbitrrdi 251 . . . . . 6 (Fun 𝐹 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅))
2019orim2d 963 . . . . 5 (Fun 𝐹 → ((𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
2120ralimdv 3167 . . . 4 (Fun 𝐹 → (∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
2221ralimdv 3167 . . 3 (Fun 𝐹 → (∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
23 disjors 5128 . . 3 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
24 disjors 5128 . . 3 (Disj 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅))
2522, 23, 243imtr4g 295 . 2 (Fun 𝐹 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 (𝐹𝐵)))
2625imp 405 1 ((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 843   = wceq 1539  wral 3059  Vcvv 3472  csb 3892  cin 3946  c0 4321  Disj wdisj 5112  ccnv 5674  cima 5678  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rmo 3374  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-disj 5113  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6544
This theorem is referenced by:  fnpreimac  32163  elrspunidl  32820  sibfof  33637  dstrvprob  33768
  Copyright terms: Public domain W3C validator