Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjpreima Structured version   Visualization version   GIF version

Theorem disjpreima 32604
Description: A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
disjpreima ((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjpreima
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inpreima 7084 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)))
2 imaeq2 6076 . . . . . . . . . 10 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = (𝐹 “ ∅))
3 ima0 6097 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
42, 3eqtrdi 2791 . . . . . . . . 9 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = ∅)
51, 4sylan9req 2796 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅)
65ex 412 . . . . . . 7 (Fun 𝐹 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅))
7 csbima12 6099 . . . . . . . . . 10 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
8 csbconstg 3927 . . . . . . . . . . . 12 (𝑦 ∈ V → 𝑦 / 𝑥𝐹 = 𝐹)
98elv 3483 . . . . . . . . . . 11 𝑦 / 𝑥𝐹 = 𝐹
109imaeq1i 6077 . . . . . . . . . 10 (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐹𝑦 / 𝑥𝐵)
117, 10eqtri 2763 . . . . . . . . 9 𝑦 / 𝑥(𝐹𝐵) = (𝐹𝑦 / 𝑥𝐵)
12 csbima12 6099 . . . . . . . . . 10 𝑧 / 𝑥(𝐹𝐵) = (𝑧 / 𝑥𝐹𝑧 / 𝑥𝐵)
13 csbconstg 3927 . . . . . . . . . . . 12 (𝑧 ∈ V → 𝑧 / 𝑥𝐹 = 𝐹)
1413elv 3483 . . . . . . . . . . 11 𝑧 / 𝑥𝐹 = 𝐹
1514imaeq1i 6077 . . . . . . . . . 10 (𝑧 / 𝑥𝐹𝑧 / 𝑥𝐵) = (𝐹𝑧 / 𝑥𝐵)
1612, 15eqtri 2763 . . . . . . . . 9 𝑧 / 𝑥(𝐹𝐵) = (𝐹𝑧 / 𝑥𝐵)
1711, 16ineq12i 4226 . . . . . . . 8 (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵))
1817eqeq1i 2740 . . . . . . 7 ((𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅ ↔ ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅)
196, 18imbitrrdi 252 . . . . . 6 (Fun 𝐹 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅))
2019orim2d 968 . . . . 5 (Fun 𝐹 → ((𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
2120ralimdv 3167 . . . 4 (Fun 𝐹 → (∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
2221ralimdv 3167 . . 3 (Fun 𝐹 → (∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
23 disjors 5131 . . 3 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
24 disjors 5131 . . 3 (Disj 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅))
2522, 23, 243imtr4g 296 . 2 (Fun 𝐹 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 (𝐹𝐵)))
2625imp 406 1 ((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wral 3059  Vcvv 3478  csb 3908  cin 3962  c0 4339  Disj wdisj 5115  ccnv 5688  cima 5692  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rmo 3378  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-disj 5116  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565
This theorem is referenced by:  fnpreimac  32688  elrspunidl  33436  sibfof  34322  dstrvprob  34453
  Copyright terms: Public domain W3C validator