Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjpreima Structured version   Visualization version   GIF version

Theorem disjpreima 32606
Description: A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
disjpreima ((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjpreima
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inpreima 7097 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)))
2 imaeq2 6085 . . . . . . . . . 10 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = (𝐹 “ ∅))
3 ima0 6106 . . . . . . . . . 10 (𝐹 “ ∅) = ∅
42, 3eqtrdi 2796 . . . . . . . . 9 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝐹 “ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵)) = ∅)
51, 4sylan9req 2801 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅)
65ex 412 . . . . . . 7 (Fun 𝐹 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅))
7 csbima12 6108 . . . . . . . . . 10 𝑦 / 𝑥(𝐹𝐵) = (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵)
8 csbconstg 3940 . . . . . . . . . . . 12 (𝑦 ∈ V → 𝑦 / 𝑥𝐹 = 𝐹)
98elv 3493 . . . . . . . . . . 11 𝑦 / 𝑥𝐹 = 𝐹
109imaeq1i 6086 . . . . . . . . . 10 (𝑦 / 𝑥𝐹𝑦 / 𝑥𝐵) = (𝐹𝑦 / 𝑥𝐵)
117, 10eqtri 2768 . . . . . . . . 9 𝑦 / 𝑥(𝐹𝐵) = (𝐹𝑦 / 𝑥𝐵)
12 csbima12 6108 . . . . . . . . . 10 𝑧 / 𝑥(𝐹𝐵) = (𝑧 / 𝑥𝐹𝑧 / 𝑥𝐵)
13 csbconstg 3940 . . . . . . . . . . . 12 (𝑧 ∈ V → 𝑧 / 𝑥𝐹 = 𝐹)
1413elv 3493 . . . . . . . . . . 11 𝑧 / 𝑥𝐹 = 𝐹
1514imaeq1i 6086 . . . . . . . . . 10 (𝑧 / 𝑥𝐹𝑧 / 𝑥𝐵) = (𝐹𝑧 / 𝑥𝐵)
1612, 15eqtri 2768 . . . . . . . . 9 𝑧 / 𝑥(𝐹𝐵) = (𝐹𝑧 / 𝑥𝐵)
1711, 16ineq12i 4239 . . . . . . . 8 (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵))
1817eqeq1i 2745 . . . . . . 7 ((𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅ ↔ ((𝐹𝑦 / 𝑥𝐵) ∩ (𝐹𝑧 / 𝑥𝐵)) = ∅)
196, 18imbitrrdi 252 . . . . . 6 (Fun 𝐹 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅))
2019orim2d 967 . . . . 5 (Fun 𝐹 → ((𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
2120ralimdv 3175 . . . 4 (Fun 𝐹 → (∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
2221ralimdv 3175 . . 3 (Fun 𝐹 → (∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅)))
23 disjors 5149 . . 3 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
24 disjors 5149 . . 3 (Disj 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐹𝐵) ∩ 𝑧 / 𝑥(𝐹𝐵)) = ∅))
2522, 23, 243imtr4g 296 . 2 (Fun 𝐹 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 (𝐹𝐵)))
2625imp 406 1 ((Fun 𝐹Disj 𝑥𝐴 𝐵) → Disj 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wral 3067  Vcvv 3488  csb 3921  cin 3975  c0 4352  Disj wdisj 5133  ccnv 5699  cima 5703  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-disj 5134  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575
This theorem is referenced by:  fnpreimac  32689  elrspunidl  33421  sibfof  34305  dstrvprob  34436
  Copyright terms: Public domain W3C validator