MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem6 Structured version   Visualization version   GIF version

Theorem aalioulem6 26221
Description: Lemma for aaliou 26222. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem6 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞   𝑥,𝑁
Allowed substitution hints:   𝑁(𝑞,𝑝)

Proof of Theorem aalioulem6
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . . 4 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . . 4 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . . 4 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . . 4 (𝜑𝐴 ∈ ℝ)
51, 2, 3, 4aalioulem2 26217 . . 3 (𝜑 → ∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6 aalioulem3.e . . . 4 (𝜑 → (𝐹𝐴) = 0)
71, 2, 3, 4, 6aalioulem5 26220 . . 3 (𝜑 → ∃𝑏 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8 reeanv 3207 . . 3 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) ↔ (∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∃𝑏 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
95, 7, 8sylanbrc 583 . 2 (𝜑 → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
10 r19.26-2 3118 . . . 4 (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) ↔ (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
11 ifcl 4530 . . . . . 6 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
1211adantl 481 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
13 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → (𝐹‘(𝑝 / 𝑞)) = 0)
1411ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
15 nnrp 12939 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ+)
1615ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
173ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
1817nnzd 12532 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
1916, 18rpexpcld 14188 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
2014, 19rpdivcld 12988 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ+)
2120rpred 12971 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ)
22 simplrl 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+)
2322, 19rpdivcld 12988 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ+)
2423rpred 12971 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ)
254ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
26 znq 12887 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
27 qre 12888 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
2928adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
3025, 29resubcld 11582 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
3130recnd 11178 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
3231abscld 15381 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
3321, 24, 323jca 1128 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3433adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3514rpred 12971 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
3622rpred 12971 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ)
37 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑏 ∈ ℝ+)
3837rpred 12971 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑏 ∈ ℝ)
39 min1 13125 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
4036, 38, 39syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
4135, 36, 19, 40lediv1dd 13029 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)))
4241anim1i 615 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
43 letr 11244 . . . . . . . . . . . . 13 (((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4434, 42, 43sylc 65 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
4544ex 412 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4645adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4746orim2d 968 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
4813, 47embantd 59 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
4948adantrd 491 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → ((((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
50 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → (𝐹‘(𝑝 / 𝑞)) ≠ 0)
5137, 19rpdivcld 12988 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑏 / (𝑞𝑁)) ∈ ℝ+)
5251rpred 12971 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑏 / (𝑞𝑁)) ∈ ℝ)
5321, 52, 323jca 1128 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑏 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
5453adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑏 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
55 min2 13126 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
5636, 38, 55syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
5735, 38, 19, 56lediv1dd 13029 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑏 / (𝑞𝑁)))
5857anim1i 615 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑏 / (𝑞𝑁)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
59 letr 11244 . . . . . . . . . . . . 13 (((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑏 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑏 / (𝑞𝑁)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6054, 58, 59sylc 65 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
6160ex 412 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6261adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → ((𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6362orim2d 968 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6450, 63embantd 59 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6564adantld 490 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → ((((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6649, 65pm2.61dane 3012 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6766ralimdvva 3182 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
68 oveq1 7376 . . . . . . . . 9 (𝑥 = if(𝑎𝑏, 𝑎, 𝑏) → (𝑥 / (𝑞𝑁)) = (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)))
6968breq1d 5112 . . . . . . . 8 (𝑥 = if(𝑎𝑏, 𝑎, 𝑏) → ((𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7069orbi2d 915 . . . . . . 7 (𝑥 = if(𝑎𝑏, 𝑎, 𝑏) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
71702ralbidv 3199 . . . . . 6 (𝑥 = if(𝑎𝑏, 𝑎, 𝑏) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7271rspcev 3585 . . . . 5 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7312, 67, 72syl6an 684 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7410, 73biimtrrid 243 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ((∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7574rexlimdvva 3192 . 2 (𝜑 → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
769, 75mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ifcif 4484   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  cle 11185  cmin 11381   / cdiv 11811  cn 12162  cz 12505  cq 12883  +crp 12927  cexp 14002  abscabs 15176  Polycply 26065  degcdgr 26068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-0p 25547  df-limc 25743  df-dv 25744  df-dvn 25745  df-cpn 25746  df-ply 26069  df-idp 26070  df-coe 26071  df-dgr 26072  df-quot 26175
This theorem is referenced by:  aaliou  26222
  Copyright terms: Public domain W3C validator