MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem6 Structured version   Visualization version   GIF version

Theorem aalioulem6 24433
Description: Lemma for aaliou 24434. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem6 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞   𝑥,𝑁
Allowed substitution hints:   𝑁(𝑞,𝑝)

Proof of Theorem aalioulem6
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . . 4 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . . 4 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . . 4 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . . 4 (𝜑𝐴 ∈ ℝ)
51, 2, 3, 4aalioulem2 24429 . . 3 (𝜑 → ∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6 aalioulem3.e . . . 4 (𝜑 → (𝐹𝐴) = 0)
71, 2, 3, 4, 6aalioulem5 24432 . . 3 (𝜑 → ∃𝑏 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8 reeanv 3288 . . 3 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) ↔ (∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∃𝑏 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
95, 7, 8sylanbrc 579 . 2 (𝜑 → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
10 r19.26-2 3246 . . . 4 (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) ↔ (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
11 ifcl 4321 . . . . . 6 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
1211adantl 474 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
13 simpr 478 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → (𝐹‘(𝑝 / 𝑞)) = 0)
1411ad2antlr 719 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
15 nnrp 12087 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ+)
1615ad2antll 721 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
173ad2antrr 718 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
1817nnzd 11771 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
1916, 18rpexpcld 13288 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
2014, 19rpdivcld 12134 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ+)
2120rpred 12117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ)
22 simplrl 796 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+)
2322, 19rpdivcld 12134 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ+)
2423rpred 12117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ)
254ad2antrr 718 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℝ)
26 znq 12037 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
27 qre 12038 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
2928adantl 474 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
3025, 29resubcld 10750 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
3130recnd 10357 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
3231abscld 14516 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
3321, 24, 323jca 1159 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3433adantr 473 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
3514rpred 12117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
3622rpred 12117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ)
37 simplrr 797 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑏 ∈ ℝ+)
3837rpred 12117 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑏 ∈ ℝ)
39 min1 12269 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
4036, 38, 39syl2anc 580 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
4135, 36, 19, 40lediv1dd 12175 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)))
4241anim1i 609 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
43 letr 10421 . . . . . . . . . . . . 13 (((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4434, 42, 43sylc 65 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
4544ex 402 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4645adantr 473 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
4746orim2d 990 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
4813, 47embantd 59 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
4948adantrd 486 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) = 0) → ((((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
50 simpr 478 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → (𝐹‘(𝑝 / 𝑞)) ≠ 0)
5137, 19rpdivcld 12134 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑏 / (𝑞𝑁)) ∈ ℝ+)
5251rpred 12117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑏 / (𝑞𝑁)) ∈ ℝ)
5321, 52, 323jca 1159 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑏 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
5453adantr 473 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑏 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
55 min2 12270 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
5636, 38, 55syl2anc 580 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
5735, 38, 19, 56lediv1dd 12175 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑏 / (𝑞𝑁)))
5857anim1i 609 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑏 / (𝑞𝑁)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
59 letr 10421 . . . . . . . . . . . . 13 (((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ∈ ℝ ∧ (𝑏 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → (((if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (𝑏 / (𝑞𝑁)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6054, 58, 59sylc 65 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
6160ex 402 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6261adantr 473 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → ((𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
6362orim2d 990 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6450, 63embantd 59 . . . . . . . 8 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6564adantld 485 . . . . . . 7 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝐹‘(𝑝 / 𝑞)) ≠ 0) → ((((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6649, 65pm2.61dane 3058 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
6766ralimdvva 3145 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
68 oveq1 6885 . . . . . . . . 9 (𝑥 = if(𝑎𝑏, 𝑎, 𝑏) → (𝑥 / (𝑞𝑁)) = (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)))
6968breq1d 4853 . . . . . . . 8 (𝑥 = if(𝑎𝑏, 𝑎, 𝑏) → ((𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7069orbi2d 940 . . . . . . 7 (𝑥 = if(𝑎𝑏, 𝑎, 𝑏) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
71702ralbidv 3170 . . . . . 6 (𝑥 = if(𝑎𝑏, 𝑎, 𝑏) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7271rspcev 3497 . . . . 5 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (if(𝑎𝑏, 𝑎, 𝑏) / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7312, 67, 72syl6an 675 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7410, 73syl5bir 235 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ((∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
7574rexlimdvva 3219 . 2 (𝜑 → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑏 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
769, 75mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wral 3089  wrex 3090  ifcif 4277   class class class wbr 4843  cfv 6101  (class class class)co 6878  cr 10223  0cc0 10224  cle 10364  cmin 10556   / cdiv 10976  cn 11312  cz 11666  cq 12033  +crp 12074  cexp 13114  abscabs 14315  Polycply 24281  degcdgr 24284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-xnn0 11653  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-rlim 14561  df-sum 14758  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-grp 17741  df-minusg 17742  df-mulg 17857  df-subg 17904  df-cntz 18062  df-cmn 18510  df-mgp 18806  df-ur 18818  df-ring 18865  df-cring 18866  df-subrg 19096  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-lp 21269  df-perf 21270  df-cn 21360  df-cnp 21361  df-haus 21448  df-cmp 21519  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cncf 23009  df-0p 23778  df-limc 23971  df-dv 23972  df-dvn 23973  df-cpn 23974  df-ply 24285  df-idp 24286  df-coe 24287  df-dgr 24288  df-quot 24387
This theorem is referenced by:  aaliou  24434
  Copyright terms: Public domain W3C validator