MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlt Structured version   Visualization version   GIF version

Theorem dgrlt 25114
Description: Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.)
Hypotheses
Ref Expression
dgreq0.1 𝑁 = (deg‘𝐹)
dgreq0.2 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrlt ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝𝑁 < 𝑀) ↔ (𝑁𝑀 ∧ (𝐴𝑀) = 0)))

Proof of Theorem dgrlt
StepHypRef Expression
1 simpr 488 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝐹 = 0𝑝)
21fveq2d 6699 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (deg‘𝐹) = (deg‘0𝑝))
3 dgreq0.1 . . . . . 6 𝑁 = (deg‘𝐹)
4 dgr0 25110 . . . . . . 7 (deg‘0𝑝) = 0
54eqcomi 2745 . . . . . 6 0 = (deg‘0𝑝)
62, 3, 53eqtr4g 2796 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝑁 = 0)
7 nn0ge0 12080 . . . . . 6 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
87ad2antlr 727 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 0 ≤ 𝑀)
96, 8eqbrtrd 5061 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝑁𝑀)
101fveq2d 6699 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (coeff‘𝐹) = (coeff‘0𝑝))
11 dgreq0.2 . . . . . . 7 𝐴 = (coeff‘𝐹)
12 coe0 25104 . . . . . . . 8 (coeff‘0𝑝) = (ℕ0 × {0})
1312eqcomi 2745 . . . . . . 7 (ℕ0 × {0}) = (coeff‘0𝑝)
1410, 11, 133eqtr4g 2796 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝐴 = (ℕ0 × {0}))
1514fveq1d 6697 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝐴𝑀) = ((ℕ0 × {0})‘𝑀))
16 c0ex 10792 . . . . . . 7 0 ∈ V
1716fvconst2 6997 . . . . . 6 (𝑀 ∈ ℕ0 → ((ℕ0 × {0})‘𝑀) = 0)
1817ad2antlr 727 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → ((ℕ0 × {0})‘𝑀) = 0)
1915, 18eqtrd 2771 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝐴𝑀) = 0)
209, 19jca 515 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
21 dgrcl 25081 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
223, 21eqeltrid 2835 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
2322nn0red 12116 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℝ)
24 nn0re 12064 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
25 ltle 10886 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀𝑁𝑀))
2623, 24, 25syl2an 599 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀𝑁𝑀))
2726imp 410 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → 𝑁𝑀)
2811, 3dgrub 25082 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
29283expia 1123 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) ≠ 0 → 𝑀𝑁))
30 lenlt 10876 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3124, 23, 30syl2anr 600 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3229, 31sylibd 242 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) ≠ 0 → ¬ 𝑁 < 𝑀))
3332necon4ad 2951 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → (𝐴𝑀) = 0))
3433imp 410 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝐴𝑀) = 0)
3527, 34jca 515 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
3620, 35jaodan 958 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝐹 = 0𝑝𝑁 < 𝑀)) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
37 leloe 10884 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
3823, 24, 37syl2an 599 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
3938biimpa 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑁 < 𝑀𝑁 = 𝑀))
4039adantrr 717 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 < 𝑀𝑁 = 𝑀))
41 fveq2 6695 . . . . . 6 (𝑁 = 𝑀 → (𝐴𝑁) = (𝐴𝑀))
423, 11dgreq0 25113 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
4342ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
44 simprr 773 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐴𝑀) = 0)
4544eqeq2d 2747 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → ((𝐴𝑁) = (𝐴𝑀) ↔ (𝐴𝑁) = 0))
4643, 45bitr4d 285 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = (𝐴𝑀)))
4741, 46syl5ibr 249 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 = 𝑀𝐹 = 0𝑝))
4847orim2d 967 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → ((𝑁 < 𝑀𝑁 = 𝑀) → (𝑁 < 𝑀𝐹 = 0𝑝)))
4940, 48mpd 15 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 < 𝑀𝐹 = 0𝑝))
5049orcomd 871 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝𝑁 < 𝑀))
5136, 50impbida 801 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝𝑁 < 𝑀) ↔ (𝑁𝑀 ∧ (𝐴𝑀) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wne 2932  {csn 4527   class class class wbr 5039   × cxp 5534  cfv 6358  cr 10693  0cc0 10694   < clt 10832  cle 10833  0cn0 12055  0𝑝c0p 24520  Polycply 25032  coeffccoe 25034  degcdgr 25035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-rlim 15015  df-sum 15215  df-0p 24521  df-ply 25036  df-coe 25038  df-dgr 25039
This theorem is referenced by:  dgrcolem2  25122  plydivlem4  25143  plydiveu  25145  dgrsub2  40604  elaa2lem  43392
  Copyright terms: Public domain W3C validator