MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlt Structured version   Visualization version   GIF version

Theorem dgrlt 26189
Description: Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.)
Hypotheses
Ref Expression
dgreq0.1 𝑁 = (deg‘𝐹)
dgreq0.2 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrlt ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝𝑁 < 𝑀) ↔ (𝑁𝑀 ∧ (𝐴𝑀) = 0)))

Proof of Theorem dgrlt
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝐹 = 0𝑝)
21fveq2d 6830 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (deg‘𝐹) = (deg‘0𝑝))
3 dgreq0.1 . . . . . 6 𝑁 = (deg‘𝐹)
4 dgr0 26185 . . . . . . 7 (deg‘0𝑝) = 0
54eqcomi 2738 . . . . . 6 0 = (deg‘0𝑝)
62, 3, 53eqtr4g 2789 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝑁 = 0)
7 nn0ge0 12428 . . . . . 6 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
87ad2antlr 727 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 0 ≤ 𝑀)
96, 8eqbrtrd 5117 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝑁𝑀)
101fveq2d 6830 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (coeff‘𝐹) = (coeff‘0𝑝))
11 dgreq0.2 . . . . . . 7 𝐴 = (coeff‘𝐹)
12 coe0 26178 . . . . . . . 8 (coeff‘0𝑝) = (ℕ0 × {0})
1312eqcomi 2738 . . . . . . 7 (ℕ0 × {0}) = (coeff‘0𝑝)
1410, 11, 133eqtr4g 2789 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝐴 = (ℕ0 × {0}))
1514fveq1d 6828 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝐴𝑀) = ((ℕ0 × {0})‘𝑀))
16 c0ex 11128 . . . . . . 7 0 ∈ V
1716fvconst2 7144 . . . . . 6 (𝑀 ∈ ℕ0 → ((ℕ0 × {0})‘𝑀) = 0)
1817ad2antlr 727 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → ((ℕ0 × {0})‘𝑀) = 0)
1915, 18eqtrd 2764 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝐴𝑀) = 0)
209, 19jca 511 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
21 dgrcl 26155 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
223, 21eqeltrid 2832 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
2322nn0red 12465 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℝ)
24 nn0re 12412 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
25 ltle 11223 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀𝑁𝑀))
2623, 24, 25syl2an 596 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀𝑁𝑀))
2726imp 406 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → 𝑁𝑀)
2811, 3dgrub 26156 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
29283expia 1121 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) ≠ 0 → 𝑀𝑁))
30 lenlt 11213 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3124, 23, 30syl2anr 597 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3229, 31sylibd 239 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) ≠ 0 → ¬ 𝑁 < 𝑀))
3332necon4ad 2944 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → (𝐴𝑀) = 0))
3433imp 406 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝐴𝑀) = 0)
3527, 34jca 511 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
3620, 35jaodan 959 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝐹 = 0𝑝𝑁 < 𝑀)) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
37 leloe 11221 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
3823, 24, 37syl2an 596 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
3938biimpa 476 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑁 < 𝑀𝑁 = 𝑀))
4039adantrr 717 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 < 𝑀𝑁 = 𝑀))
41 fveq2 6826 . . . . . 6 (𝑁 = 𝑀 → (𝐴𝑁) = (𝐴𝑀))
423, 11dgreq0 26188 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
4342ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
44 simprr 772 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐴𝑀) = 0)
4544eqeq2d 2740 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → ((𝐴𝑁) = (𝐴𝑀) ↔ (𝐴𝑁) = 0))
4643, 45bitr4d 282 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = (𝐴𝑀)))
4741, 46imbitrrid 246 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 = 𝑀𝐹 = 0𝑝))
4847orim2d 968 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → ((𝑁 < 𝑀𝑁 = 𝑀) → (𝑁 < 𝑀𝐹 = 0𝑝)))
4940, 48mpd 15 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 < 𝑀𝐹 = 0𝑝))
5049orcomd 871 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝𝑁 < 𝑀))
5136, 50impbida 800 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝𝑁 < 𝑀) ↔ (𝑁𝑀 ∧ (𝐴𝑀) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {csn 4579   class class class wbr 5095   × cxp 5621  cfv 6486  cr 11027  0cc0 11028   < clt 11168  cle 11169  0cn0 12403  0𝑝c0p 25587  Polycply 26106  coeffccoe 26108  degcdgr 26109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-rlim 15415  df-sum 15613  df-0p 25588  df-ply 26110  df-coe 26112  df-dgr 26113
This theorem is referenced by:  dgrcolem2  26197  plydivlem4  26221  plydiveu  26223  dgrsub2  43128  elaa2lem  46234
  Copyright terms: Public domain W3C validator