Proof of Theorem dgrlt
Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
𝐹 =
0𝑝) |
2 | 1 | fveq2d 6778 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
(deg‘𝐹) =
(deg‘0𝑝)) |
3 | | dgreq0.1 |
. . . . . 6
⊢ 𝑁 = (deg‘𝐹) |
4 | | dgr0 25423 |
. . . . . . 7
⊢
(deg‘0𝑝) = 0 |
5 | 4 | eqcomi 2747 |
. . . . . 6
⊢ 0 =
(deg‘0𝑝) |
6 | 2, 3, 5 | 3eqtr4g 2803 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
𝑁 = 0) |
7 | | nn0ge0 12258 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ 0 ≤ 𝑀) |
8 | 7 | ad2antlr 724 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
0 ≤ 𝑀) |
9 | 6, 8 | eqbrtrd 5096 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
𝑁 ≤ 𝑀) |
10 | 1 | fveq2d 6778 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
(coeff‘𝐹) =
(coeff‘0𝑝)) |
11 | | dgreq0.2 |
. . . . . . 7
⊢ 𝐴 = (coeff‘𝐹) |
12 | | coe0 25417 |
. . . . . . . 8
⊢
(coeff‘0𝑝) = (ℕ0 ×
{0}) |
13 | 12 | eqcomi 2747 |
. . . . . . 7
⊢
(ℕ0 × {0}) =
(coeff‘0𝑝) |
14 | 10, 11, 13 | 3eqtr4g 2803 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
𝐴 = (ℕ0
× {0})) |
15 | 14 | fveq1d 6776 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
(𝐴‘𝑀) = ((ℕ0 ×
{0})‘𝑀)) |
16 | | c0ex 10969 |
. . . . . . 7
⊢ 0 ∈
V |
17 | 16 | fvconst2 7079 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ ((ℕ0 × {0})‘𝑀) = 0) |
18 | 17 | ad2antlr 724 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
((ℕ0 × {0})‘𝑀) = 0) |
19 | 15, 18 | eqtrd 2778 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
(𝐴‘𝑀) = 0) |
20 | 9, 19 | jca 512 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) →
(𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) |
21 | | dgrcl 25394 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
22 | 3, 21 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) |
23 | 22 | nn0red 12294 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℝ) |
24 | | nn0re 12242 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
25 | | ltle 11063 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀 → 𝑁 ≤ 𝑀)) |
26 | 23, 24, 25 | syl2an 596 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → 𝑁 ≤ 𝑀)) |
27 | 26 | imp 407 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → 𝑁 ≤ 𝑀) |
28 | 11, 3 | dgrub 25395 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ≠ 0) → 𝑀 ≤ 𝑁) |
29 | 28 | 3expia 1120 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴‘𝑀) ≠ 0 → 𝑀 ≤ 𝑁)) |
30 | | lenlt 11053 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
31 | 24, 23, 30 | syl2anr 597 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
32 | 29, 31 | sylibd 238 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴‘𝑀) ≠ 0 → ¬ 𝑁 < 𝑀)) |
33 | 32 | necon4ad 2962 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → (𝐴‘𝑀) = 0)) |
34 | 33 | imp 407 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝐴‘𝑀) = 0) |
35 | 27, 34 | jca 512 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) |
36 | 20, 35 | jaodan 955 |
. 2
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝐹 = 0𝑝 ∨
𝑁 < 𝑀)) → (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) |
37 | | leloe 11061 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 ≤ 𝑀 ↔ (𝑁 < 𝑀 ∨ 𝑁 = 𝑀))) |
38 | 23, 24, 37 | syl2an 596 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 ≤ 𝑀 ↔ (𝑁 < 𝑀 ∨ 𝑁 = 𝑀))) |
39 | 38 | biimpa 477 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 ≤ 𝑀) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀)) |
40 | 39 | adantrr 714 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀)) |
41 | | fveq2 6774 |
. . . . . 6
⊢ (𝑁 = 𝑀 → (𝐴‘𝑁) = (𝐴‘𝑀)) |
42 | 3, 11 | dgreq0 25426 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
43 | 42 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
44 | | simprr 770 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → (𝐴‘𝑀) = 0) |
45 | 44 | eqeq2d 2749 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → ((𝐴‘𝑁) = (𝐴‘𝑀) ↔ (𝐴‘𝑁) = 0)) |
46 | 43, 45 | bitr4d 281 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = (𝐴‘𝑀))) |
47 | 41, 46 | syl5ibr 245 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → (𝑁 = 𝑀 → 𝐹 = 0𝑝)) |
48 | 47 | orim2d 964 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → ((𝑁 < 𝑀 ∨ 𝑁 = 𝑀) → (𝑁 < 𝑀 ∨ 𝐹 = 0𝑝))) |
49 | 40, 48 | mpd 15 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → (𝑁 < 𝑀 ∨ 𝐹 = 0𝑝)) |
50 | 49 | orcomd 868 |
. 2
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0)) → (𝐹 = 0𝑝 ∨ 𝑁 < 𝑀)) |
51 | 36, 50 | impbida 798 |
1
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝 ∨
𝑁 < 𝑀) ↔ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0))) |