MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlt Structured version   Visualization version   GIF version

Theorem dgrlt 26229
Description: Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.)
Hypotheses
Ref Expression
dgreq0.1 𝑁 = (deg‘𝐹)
dgreq0.2 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrlt ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝𝑁 < 𝑀) ↔ (𝑁𝑀 ∧ (𝐴𝑀) = 0)))

Proof of Theorem dgrlt
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝐹 = 0𝑝)
21fveq2d 6885 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (deg‘𝐹) = (deg‘0𝑝))
3 dgreq0.1 . . . . . 6 𝑁 = (deg‘𝐹)
4 dgr0 26225 . . . . . . 7 (deg‘0𝑝) = 0
54eqcomi 2745 . . . . . 6 0 = (deg‘0𝑝)
62, 3, 53eqtr4g 2796 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝑁 = 0)
7 nn0ge0 12531 . . . . . 6 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
87ad2antlr 727 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 0 ≤ 𝑀)
96, 8eqbrtrd 5146 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝑁𝑀)
101fveq2d 6885 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (coeff‘𝐹) = (coeff‘0𝑝))
11 dgreq0.2 . . . . . . 7 𝐴 = (coeff‘𝐹)
12 coe0 26218 . . . . . . . 8 (coeff‘0𝑝) = (ℕ0 × {0})
1312eqcomi 2745 . . . . . . 7 (ℕ0 × {0}) = (coeff‘0𝑝)
1410, 11, 133eqtr4g 2796 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝐴 = (ℕ0 × {0}))
1514fveq1d 6883 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝐴𝑀) = ((ℕ0 × {0})‘𝑀))
16 c0ex 11234 . . . . . . 7 0 ∈ V
1716fvconst2 7201 . . . . . 6 (𝑀 ∈ ℕ0 → ((ℕ0 × {0})‘𝑀) = 0)
1817ad2antlr 727 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → ((ℕ0 × {0})‘𝑀) = 0)
1915, 18eqtrd 2771 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝐴𝑀) = 0)
209, 19jca 511 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
21 dgrcl 26195 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
223, 21eqeltrid 2839 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
2322nn0red 12568 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℝ)
24 nn0re 12515 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
25 ltle 11328 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀𝑁𝑀))
2623, 24, 25syl2an 596 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀𝑁𝑀))
2726imp 406 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → 𝑁𝑀)
2811, 3dgrub 26196 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
29283expia 1121 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) ≠ 0 → 𝑀𝑁))
30 lenlt 11318 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3124, 23, 30syl2anr 597 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3229, 31sylibd 239 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) ≠ 0 → ¬ 𝑁 < 𝑀))
3332necon4ad 2952 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → (𝐴𝑀) = 0))
3433imp 406 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝐴𝑀) = 0)
3527, 34jca 511 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
3620, 35jaodan 959 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝐹 = 0𝑝𝑁 < 𝑀)) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
37 leloe 11326 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
3823, 24, 37syl2an 596 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
3938biimpa 476 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑁 < 𝑀𝑁 = 𝑀))
4039adantrr 717 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 < 𝑀𝑁 = 𝑀))
41 fveq2 6881 . . . . . 6 (𝑁 = 𝑀 → (𝐴𝑁) = (𝐴𝑀))
423, 11dgreq0 26228 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
4342ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
44 simprr 772 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐴𝑀) = 0)
4544eqeq2d 2747 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → ((𝐴𝑁) = (𝐴𝑀) ↔ (𝐴𝑁) = 0))
4643, 45bitr4d 282 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = (𝐴𝑀)))
4741, 46imbitrrid 246 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 = 𝑀𝐹 = 0𝑝))
4847orim2d 968 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → ((𝑁 < 𝑀𝑁 = 𝑀) → (𝑁 < 𝑀𝐹 = 0𝑝)))
4940, 48mpd 15 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 < 𝑀𝐹 = 0𝑝))
5049orcomd 871 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝𝑁 < 𝑀))
5136, 50impbida 800 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝𝑁 < 𝑀) ↔ (𝑁𝑀 ∧ (𝐴𝑀) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  {csn 4606   class class class wbr 5124   × cxp 5657  cfv 6536  cr 11133  0cc0 11134   < clt 11274  cle 11275  0cn0 12506  0𝑝c0p 25627  Polycply 26146  coeffccoe 26148  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-coe 26152  df-dgr 26153
This theorem is referenced by:  dgrcolem2  26237  plydivlem4  26261  plydiveu  26263  dgrsub2  43126  elaa2lem  46229
  Copyright terms: Public domain W3C validator