![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aaliou | Structured version Visualization version GIF version |
Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aalioulem2.a | ⊢ 𝑁 = (deg‘𝐹) |
aalioulem2.b | ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) |
aalioulem2.c | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
aalioulem2.d | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
aalioulem3.e | ⊢ (𝜑 → (𝐹‘𝐴) = 0) |
Ref | Expression |
---|---|
aaliou | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aalioulem2.a | . . 3 ⊢ 𝑁 = (deg‘𝐹) | |
2 | aalioulem2.b | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) | |
3 | aalioulem2.c | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | aalioulem2.d | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | aalioulem3.e | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = 0) | |
6 | 1, 2, 3, 4, 5 | aalioulem6 26193 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
7 | rphalfcl 12999 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ → (𝑎 / 2) ∈ ℝ+) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (𝑎 / 2) ∈ ℝ+) |
9 | 7 | ad2antlr 724 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ+) |
10 | nnrp 12983 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ ℕ → 𝑞 ∈ ℝ+) | |
11 | 10 | ad2antll 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+) |
12 | 3 | nnzd 12583 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
13 | 12 | ad2antrr 723 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ) |
14 | 11, 13 | rpexpcld 14208 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑𝑁) ∈ ℝ+) |
15 | 9, 14 | rpdivcld 13031 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ+) |
16 | 15 | rpred 13014 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ) |
17 | simplr 766 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+) | |
18 | 17, 14 | rpdivcld 13031 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞↑𝑁)) ∈ ℝ+) |
19 | 18 | rpred 13014 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞↑𝑁)) ∈ ℝ) |
20 | 4 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → 𝐴 ∈ ℝ) |
21 | znq 12934 | . . . . . . . . . . . 12 ⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ) | |
22 | qre 12935 | . . . . . . . . . . . 12 ⊢ ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ) | |
23 | 21, 22 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ) |
24 | resubcl 11522 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ (𝑝 / 𝑞) ∈ ℝ) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) | |
25 | 20, 23, 24 | syl2an 595 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) |
26 | 25 | recnd 11240 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ) |
27 | 26 | abscld 15381 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) |
28 | 16, 19, 27 | 3jca 1125 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞↑𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)) |
29 | 9 | rpred 13014 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ) |
30 | rpre 12980 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ) | |
31 | 30 | ad2antlr 724 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ) |
32 | rphalflt 13001 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ ℝ+ → (𝑎 / 2) < 𝑎) | |
33 | 32 | ad2antlr 724 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) < 𝑎) |
34 | 29, 31, 14, 33 | ltdiv1dd 13071 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁))) |
35 | 34 | anim1i 614 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
36 | 35 | ex 412 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
37 | ltletr 11304 | . . . . . . 7 ⊢ ((((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞↑𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → ((((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | |
38 | 28, 36, 37 | sylsyld 61 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
39 | 38 | orim2d 963 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
40 | 39 | ralimdvva 3196 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
41 | oveq1 7409 | . . . . . . . 8 ⊢ (𝑥 = (𝑎 / 2) → (𝑥 / (𝑞↑𝑁)) = ((𝑎 / 2) / (𝑞↑𝑁))) | |
42 | 41 | breq1d 5149 | . . . . . . 7 ⊢ (𝑥 = (𝑎 / 2) → ((𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
43 | 42 | orbi2d 912 | . . . . . 6 ⊢ (𝑥 = (𝑎 / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
44 | 43 | 2ralbidv 3210 | . . . . 5 ⊢ (𝑥 = (𝑎 / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
45 | 44 | rspcev 3604 | . . . 4 ⊢ (((𝑎 / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
46 | 8, 40, 45 | syl6an 681 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
47 | 46 | rexlimdva 3147 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
48 | 6, 47 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 ℝcr 11106 0cc0 11107 < clt 11246 ≤ cle 11247 − cmin 11442 / cdiv 11869 ℕcn 12210 2c2 12265 ℤcz 12556 ℚcq 12930 ℝ+crp 12972 ↑cexp 14025 abscabs 15179 Polycply 26040 degcdgr 26043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-dju 9893 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-xnn0 12543 df-z 12557 df-dec 12676 df-uz 12821 df-q 12931 df-rp 12973 df-xneg 13090 df-xadd 13091 df-xmul 13092 df-ioo 13326 df-ico 13328 df-icc 13329 df-fz 13483 df-fzo 13626 df-fl 13755 df-seq 13965 df-exp 14026 df-hash 14289 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-clim 15430 df-rlim 15431 df-sum 15631 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-hom 17222 df-cco 17223 df-rest 17369 df-topn 17370 df-0g 17388 df-gsum 17389 df-topgen 17390 df-pt 17391 df-prds 17394 df-xrs 17449 df-qtop 17454 df-imas 17455 df-xps 17457 df-mre 17531 df-mrc 17532 df-acs 17534 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-grp 18858 df-minusg 18859 df-mulg 18988 df-subg 19042 df-cntz 19225 df-cmn 19694 df-abl 19695 df-mgp 20032 df-rng 20050 df-ur 20079 df-ring 20132 df-cring 20133 df-subrng 20438 df-subrg 20463 df-psmet 21222 df-xmet 21223 df-met 21224 df-bl 21225 df-mopn 21226 df-fbas 21227 df-fg 21228 df-cnfld 21231 df-top 22720 df-topon 22737 df-topsp 22759 df-bases 22773 df-cld 22847 df-ntr 22848 df-cls 22849 df-nei 22926 df-lp 22964 df-perf 22965 df-cn 23055 df-cnp 23056 df-haus 23143 df-cmp 23215 df-tx 23390 df-hmeo 23583 df-fil 23674 df-fm 23766 df-flim 23767 df-flf 23768 df-xms 24150 df-ms 24151 df-tms 24152 df-cncf 24722 df-0p 25523 df-limc 25719 df-dv 25720 df-dvn 25721 df-cpn 25722 df-ply 26044 df-idp 26045 df-coe 26046 df-dgr 26047 df-quot 26147 |
This theorem is referenced by: aaliou2 26196 |
Copyright terms: Public domain | W3C validator |