MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou Structured version   Visualization version   GIF version

Theorem aaliou 26268
Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aaliou (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞   𝑥,𝑁
Allowed substitution hints:   𝑁(𝑞,𝑝)

Proof of Theorem aaliou
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem6 26267 . 2 (𝜑 → ∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7 rphalfcl 12914 . . . . 5 (𝑎 ∈ ℝ+ → (𝑎 / 2) ∈ ℝ+)
87adantl 481 . . . 4 ((𝜑𝑎 ∈ ℝ+) → (𝑎 / 2) ∈ ℝ+)
97ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ+)
10 nnrp 12897 . . . . . . . . . . . 12 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ+)
1110ad2antll 729 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
123nnzd 12490 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
1312ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
1411, 13rpexpcld 14149 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
159, 14rpdivcld 12946 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞𝑁)) ∈ ℝ+)
1615rpred 12929 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞𝑁)) ∈ ℝ)
17 simplr 768 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+)
1817, 14rpdivcld 12946 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ+)
1918rpred 12929 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ)
204adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ+) → 𝐴 ∈ ℝ)
21 znq 12845 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
22 qre 12846 . . . . . . . . . . . 12 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2321, 22syl 17 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
24 resubcl 11420 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝑝 / 𝑞) ∈ ℝ) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
2520, 23, 24syl2an 596 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
2625recnd 11135 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
2726abscld 15341 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
2816, 19, 273jca 1128 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((𝑎 / 2) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
299rpred 12929 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ)
30 rpre 12894 . . . . . . . . . . 11 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
3130ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ)
32 rphalflt 12916 . . . . . . . . . . 11 (𝑎 ∈ ℝ+ → (𝑎 / 2) < 𝑎)
3332ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) < 𝑎)
3429, 31, 14, 33ltdiv1dd 12986 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞𝑁)) < (𝑎 / (𝑞𝑁)))
3534anim1i 615 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (((𝑎 / 2) / (𝑞𝑁)) < (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
3635ex 412 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (((𝑎 / 2) / (𝑞𝑁)) < (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
37 ltletr 11200 . . . . . . 7 ((((𝑎 / 2) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → ((((𝑎 / 2) / (𝑞𝑁)) < (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
3828, 36, 37sylsyld 61 . . . . . 6 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
3938orim2d 968 . . . . 5 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4039ralimdvva 3179 . . . 4 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
41 oveq1 7348 . . . . . . . 8 (𝑥 = (𝑎 / 2) → (𝑥 / (𝑞𝑁)) = ((𝑎 / 2) / (𝑞𝑁)))
4241breq1d 5096 . . . . . . 7 (𝑥 = (𝑎 / 2) → ((𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4342orbi2d 915 . . . . . 6 (𝑥 = (𝑎 / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
44432ralbidv 3196 . . . . 5 (𝑥 = (𝑎 / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4544rspcev 3572 . . . 4 (((𝑎 / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
468, 40, 45syl6an 684 . . 3 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4746rexlimdva 3133 . 2 (𝜑 → (∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
486, 47mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  cn 12120  2c2 12175  cz 12463  cq 12841  +crp 12885  cexp 13963  abscabs 15136  Polycply 26111  degcdgr 26114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-subrng 20456  df-subrg 20480  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-0p 25593  df-limc 25789  df-dv 25790  df-dvn 25791  df-cpn 25792  df-ply 26115  df-idp 26116  df-coe 26117  df-dgr 26118  df-quot 26221
This theorem is referenced by:  aaliou2  26270
  Copyright terms: Public domain W3C validator