Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aaliou | Structured version Visualization version GIF version |
Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aalioulem2.a | ⊢ 𝑁 = (deg‘𝐹) |
aalioulem2.b | ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) |
aalioulem2.c | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
aalioulem2.d | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
aalioulem3.e | ⊢ (𝜑 → (𝐹‘𝐴) = 0) |
Ref | Expression |
---|---|
aaliou | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aalioulem2.a | . . 3 ⊢ 𝑁 = (deg‘𝐹) | |
2 | aalioulem2.b | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) | |
3 | aalioulem2.c | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | aalioulem2.d | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | aalioulem3.e | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = 0) | |
6 | 1, 2, 3, 4, 5 | aalioulem6 25402 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
7 | rphalfcl 12686 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ → (𝑎 / 2) ∈ ℝ+) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (𝑎 / 2) ∈ ℝ+) |
9 | 7 | ad2antlr 723 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ+) |
10 | nnrp 12670 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ ℕ → 𝑞 ∈ ℝ+) | |
11 | 10 | ad2antll 725 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+) |
12 | 3 | nnzd 12354 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
13 | 12 | ad2antrr 722 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ) |
14 | 11, 13 | rpexpcld 13890 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑𝑁) ∈ ℝ+) |
15 | 9, 14 | rpdivcld 12718 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ+) |
16 | 15 | rpred 12701 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ) |
17 | simplr 765 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+) | |
18 | 17, 14 | rpdivcld 12718 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞↑𝑁)) ∈ ℝ+) |
19 | 18 | rpred 12701 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞↑𝑁)) ∈ ℝ) |
20 | 4 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → 𝐴 ∈ ℝ) |
21 | znq 12621 | . . . . . . . . . . . 12 ⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ) | |
22 | qre 12622 | . . . . . . . . . . . 12 ⊢ ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ) | |
23 | 21, 22 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ) |
24 | resubcl 11215 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ (𝑝 / 𝑞) ∈ ℝ) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) | |
25 | 20, 23, 24 | syl2an 595 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) |
26 | 25 | recnd 10934 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ) |
27 | 26 | abscld 15076 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) |
28 | 16, 19, 27 | 3jca 1126 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞↑𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)) |
29 | 9 | rpred 12701 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ) |
30 | rpre 12667 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ) | |
31 | 30 | ad2antlr 723 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ) |
32 | rphalflt 12688 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ ℝ+ → (𝑎 / 2) < 𝑎) | |
33 | 32 | ad2antlr 723 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) < 𝑎) |
34 | 29, 31, 14, 33 | ltdiv1dd 12758 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁))) |
35 | 34 | anim1i 614 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
36 | 35 | ex 412 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
37 | ltletr 10997 | . . . . . . 7 ⊢ ((((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞↑𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → ((((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | |
38 | 28, 36, 37 | sylsyld 61 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
39 | 38 | orim2d 963 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
40 | 39 | ralimdvva 3104 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
41 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑥 = (𝑎 / 2) → (𝑥 / (𝑞↑𝑁)) = ((𝑎 / 2) / (𝑞↑𝑁))) | |
42 | 41 | breq1d 5080 | . . . . . . 7 ⊢ (𝑥 = (𝑎 / 2) → ((𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
43 | 42 | orbi2d 912 | . . . . . 6 ⊢ (𝑥 = (𝑎 / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
44 | 43 | 2ralbidv 3122 | . . . . 5 ⊢ (𝑥 = (𝑎 / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
45 | 44 | rspcev 3552 | . . . 4 ⊢ (((𝑎 / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
46 | 8, 40, 45 | syl6an 680 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
47 | 46 | rexlimdva 3212 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
48 | 6, 47 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 ℤcz 12249 ℚcq 12617 ℝ+crp 12659 ↑cexp 13710 abscabs 14873 Polycply 25250 degcdgr 25253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-mulg 18616 df-subg 18667 df-cntz 18838 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-0p 24739 df-limc 24935 df-dv 24936 df-dvn 24937 df-cpn 24938 df-ply 25254 df-idp 25255 df-coe 25256 df-dgr 25257 df-quot 25356 |
This theorem is referenced by: aaliou2 25405 |
Copyright terms: Public domain | W3C validator |