![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aaliou | Structured version Visualization version GIF version |
Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aalioulem2.a | ⊢ 𝑁 = (deg‘𝐹) |
aalioulem2.b | ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) |
aalioulem2.c | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
aalioulem2.d | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
aalioulem3.e | ⊢ (𝜑 → (𝐹‘𝐴) = 0) |
Ref | Expression |
---|---|
aaliou | ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aalioulem2.a | . . 3 ⊢ 𝑁 = (deg‘𝐹) | |
2 | aalioulem2.b | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) | |
3 | aalioulem2.c | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | aalioulem2.d | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | aalioulem3.e | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = 0) | |
6 | 1, 2, 3, 4, 5 | aalioulem6 26397 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
7 | rphalfcl 13084 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ → (𝑎 / 2) ∈ ℝ+) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (𝑎 / 2) ∈ ℝ+) |
9 | 7 | ad2antlr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ+) |
10 | nnrp 13068 | . . . . . . . . . . . 12 ⊢ (𝑞 ∈ ℕ → 𝑞 ∈ ℝ+) | |
11 | 10 | ad2antll 728 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+) |
12 | 3 | nnzd 12666 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
13 | 12 | ad2antrr 725 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ) |
14 | 11, 13 | rpexpcld 14296 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑𝑁) ∈ ℝ+) |
15 | 9, 14 | rpdivcld 13116 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ+) |
16 | 15 | rpred 13099 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ) |
17 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+) | |
18 | 17, 14 | rpdivcld 13116 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞↑𝑁)) ∈ ℝ+) |
19 | 18 | rpred 13099 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞↑𝑁)) ∈ ℝ) |
20 | 4 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → 𝐴 ∈ ℝ) |
21 | znq 13017 | . . . . . . . . . . . 12 ⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ) | |
22 | qre 13018 | . . . . . . . . . . . 12 ⊢ ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ) | |
23 | 21, 22 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ) |
24 | resubcl 11600 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℝ ∧ (𝑝 / 𝑞) ∈ ℝ) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) | |
25 | 20, 23, 24 | syl2an 595 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) |
26 | 25 | recnd 11318 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ) |
27 | 26 | abscld 15485 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) |
28 | 16, 19, 27 | 3jca 1128 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞↑𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)) |
29 | 9 | rpred 13099 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ) |
30 | rpre 13065 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ) | |
31 | 30 | ad2antlr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ) |
32 | rphalflt 13086 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ ℝ+ → (𝑎 / 2) < 𝑎) | |
33 | 32 | ad2antlr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) < 𝑎) |
34 | 29, 31, 14, 33 | ltdiv1dd 13156 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁))) |
35 | 34 | anim1i 614 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
36 | 35 | ex 412 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
37 | ltletr 11382 | . . . . . . 7 ⊢ ((((𝑎 / 2) / (𝑞↑𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞↑𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → ((((𝑎 / 2) / (𝑞↑𝑁)) < (𝑎 / (𝑞↑𝑁)) ∧ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | |
38 | 28, 36, 37 | sylsyld 61 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
39 | 38 | orim2d 967 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
40 | 39 | ralimdvva 3212 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
41 | oveq1 7455 | . . . . . . . 8 ⊢ (𝑥 = (𝑎 / 2) → (𝑥 / (𝑞↑𝑁)) = ((𝑎 / 2) / (𝑞↑𝑁))) | |
42 | 41 | breq1d 5176 | . . . . . . 7 ⊢ (𝑥 = (𝑎 / 2) → ((𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
43 | 42 | orbi2d 914 | . . . . . 6 ⊢ (𝑥 = (𝑎 / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
44 | 43 | 2ralbidv 3227 | . . . . 5 ⊢ (𝑥 = (𝑎 / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
45 | 44 | rspcev 3635 | . . . 4 ⊢ (((𝑎 / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
46 | 8, 40, 45 | syl6an 683 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
47 | 46 | rexlimdva 3161 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
48 | 6, 47 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 ℕcn 12293 2c2 12348 ℤcz 12639 ℚcq 13013 ℝ+crp 13057 ↑cexp 14112 abscabs 15283 Polycply 26243 degcdgr 26246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-0p 25724 df-limc 25921 df-dv 25922 df-dvn 25923 df-cpn 25924 df-ply 26247 df-idp 26248 df-coe 26249 df-dgr 26250 df-quot 26351 |
This theorem is referenced by: aaliou2 26400 |
Copyright terms: Public domain | W3C validator |