MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou Structured version   Visualization version   GIF version

Theorem aaliou 24932
Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aaliou (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞   𝑥,𝑁
Allowed substitution hints:   𝑁(𝑞,𝑝)

Proof of Theorem aaliou
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem6 24931 . 2 (𝜑 → ∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
7 rphalfcl 12404 . . . . 5 (𝑎 ∈ ℝ+ → (𝑎 / 2) ∈ ℝ+)
87adantl 485 . . . 4 ((𝜑𝑎 ∈ ℝ+) → (𝑎 / 2) ∈ ℝ+)
97ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ+)
10 nnrp 12388 . . . . . . . . . . . 12 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ+)
1110ad2antll 728 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
123nnzd 12074 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
1312ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
1411, 13rpexpcld 13604 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℝ+)
159, 14rpdivcld 12436 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞𝑁)) ∈ ℝ+)
1615rpred 12419 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞𝑁)) ∈ ℝ)
17 simplr 768 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ+)
1817, 14rpdivcld 12436 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ+)
1918rpred 12419 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / (𝑞𝑁)) ∈ ℝ)
204adantr 484 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ+) → 𝐴 ∈ ℝ)
21 znq 12340 . . . . . . . . . . . 12 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
22 qre 12341 . . . . . . . . . . . 12 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2321, 22syl 17 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℝ)
24 resubcl 10939 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝑝 / 𝑞) ∈ ℝ) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
2520, 23, 24syl2an 598 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
2625recnd 10658 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
2726abscld 14787 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
2816, 19, 273jca 1125 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((𝑎 / 2) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ))
299rpred 12419 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) ∈ ℝ)
30 rpre 12385 . . . . . . . . . . 11 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
3130ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝑎 ∈ ℝ)
32 rphalflt 12406 . . . . . . . . . . 11 (𝑎 ∈ ℝ+ → (𝑎 / 2) < 𝑎)
3332ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑎 / 2) < 𝑎)
3429, 31, 14, 33ltdiv1dd 12476 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / 2) / (𝑞𝑁)) < (𝑎 / (𝑞𝑁)))
3534anim1i 617 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (((𝑎 / 2) / (𝑞𝑁)) < (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
3635ex 416 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (((𝑎 / 2) / (𝑞𝑁)) < (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
37 ltletr 10721 . . . . . . 7 ((((𝑎 / 2) / (𝑞𝑁)) ∈ ℝ ∧ (𝑎 / (𝑞𝑁)) ∈ ℝ ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) → ((((𝑎 / 2) / (𝑞𝑁)) < (𝑎 / (𝑞𝑁)) ∧ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
3828, 36, 37sylsyld 61 . . . . . 6 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
3938orim2d 964 . . . . 5 (((𝜑𝑎 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4039ralimdvva 3171 . . . 4 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
41 oveq1 7147 . . . . . . . 8 (𝑥 = (𝑎 / 2) → (𝑥 / (𝑞𝑁)) = ((𝑎 / 2) / (𝑞𝑁)))
4241breq1d 5052 . . . . . . 7 (𝑥 = (𝑎 / 2) → ((𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4342orbi2d 913 . . . . . 6 (𝑥 = (𝑎 / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
44432ralbidv 3189 . . . . 5 (𝑥 = (𝑎 / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4544rspcev 3598 . . . 4 (((𝑎 / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ ((𝑎 / 2) / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
468, 40, 45syl6an 683 . . 3 ((𝜑𝑎 ∈ ℝ+) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4746rexlimdva 3270 . 2 (𝜑 → (∃𝑎 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑎 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
486, 47mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2114  wral 3130  wrex 3131   class class class wbr 5042  cfv 6334  (class class class)co 7140  cr 10525  0cc0 10526   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  cz 11969  cq 12336  +crp 12377  cexp 13425  abscabs 14584  Polycply 24779  degcdgr 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-rlim 14837  df-sum 15034  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-mulg 18216  df-subg 18267  df-cntz 18438  df-cmn 18899  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-subrg 19524  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-0p 24272  df-limc 24467  df-dv 24468  df-dvn 24469  df-cpn 24470  df-ply 24783  df-idp 24784  df-coe 24785  df-dgr 24786  df-quot 24885
This theorem is referenced by:  aaliou2  24934
  Copyright terms: Public domain W3C validator