Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzunuz Structured version   Visualization version   GIF version

Theorem lzunuz 37830
Description: The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
lzunuz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)

Proof of Theorem lzunuz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elun 3952 . . 3 (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)))
2 ellz1 37829 . . . . . 6 (𝐴 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
323ad2ant1 1156 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
4 eluz1 11904 . . . . . 6 (𝐵 ∈ ℤ → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
543ad2ant2 1157 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
63, 5orbi12d 933 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎))))
7 zre 11643 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
87adantl 469 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
9 simpl1 1235 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℤ)
109zred 11744 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℝ)
11 lelttric 10425 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑎𝐴𝐴 < 𝑎))
128, 10, 11syl2anc 575 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐴 < 𝑎))
13 simpll2 1264 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℤ)
1413zred 11744 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℝ)
15 simpll1 1262 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐴 ∈ ℤ)
1615peano2zd 11747 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℤ)
1716zred 11744 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℝ)
187ad2antlr 709 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝑎 ∈ ℝ)
19 simpll3 1266 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ≤ (𝐴 + 1))
20 zltp1le 11689 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
21203ad2antl1 1229 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
2221biimpa 464 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ≤ 𝑎)
2314, 17, 18, 19, 22letrd 10475 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵𝑎)
2423ex 399 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎𝐵𝑎))
2524orim2d 980 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → ((𝑎𝐴𝐴 < 𝑎) → (𝑎𝐴𝐵𝑎)))
2612, 25mpd 15 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐵𝑎))
2726ex 399 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ → (𝑎𝐴𝐵𝑎)))
2827pm4.71d 553 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎))))
29 andi 1021 . . . . 5 ((𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
3028, 29syl6rbb 279 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)) ↔ 𝑎 ∈ ℤ))
316, 30bitrd 270 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
321, 31syl5bb 274 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
3332eqrdv 2804 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2156  cdif 3766  cun 3767   class class class wbr 4844  cfv 6097  (class class class)co 6870  cr 10216  1c1 10218   + caddc 10220   < clt 10355  cle 10356  cz 11639  cuz 11900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-n0 11556  df-z 11640  df-uz 11901
This theorem is referenced by:  diophin  37835
  Copyright terms: Public domain W3C validator