Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzunuz Structured version   Visualization version   GIF version

Theorem lzunuz 42089
Description: The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
lzunuz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)

Proof of Theorem lzunuz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elun 4143 . . 3 (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)))
2 ellz1 42088 . . . . . 6 (𝐴 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
323ad2ant1 1130 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
4 eluz1 12830 . . . . . 6 (𝐵 ∈ ℤ → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
543ad2ant2 1131 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
63, 5orbi12d 915 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎))))
7 zre 12566 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
87adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
9 simpl1 1188 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℤ)
109zred 12670 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℝ)
11 lelttric 11325 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑎𝐴𝐴 < 𝑎))
128, 10, 11syl2anc 583 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐴 < 𝑎))
13 simpll2 1210 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℤ)
1413zred 12670 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℝ)
15 simpll1 1209 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐴 ∈ ℤ)
1615peano2zd 12673 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℤ)
1716zred 12670 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℝ)
187ad2antlr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝑎 ∈ ℝ)
19 simpll3 1211 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ≤ (𝐴 + 1))
20 zltp1le 12616 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
21203ad2antl1 1182 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
2221biimpa 476 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ≤ 𝑎)
2314, 17, 18, 19, 22letrd 11375 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵𝑎)
2423ex 412 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎𝐵𝑎))
2524orim2d 963 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → ((𝑎𝐴𝐴 < 𝑎) → (𝑎𝐴𝐵𝑎)))
2612, 25mpd 15 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐵𝑎))
2726ex 412 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ → (𝑎𝐴𝐵𝑎)))
2827pm4.71d 561 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎))))
29 andi 1004 . . . . 5 ((𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
3028, 29bitr2di 288 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)) ↔ 𝑎 ∈ ℤ))
316, 30bitrd 279 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
321, 31bitrid 283 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
3332eqrdv 2724 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  cdif 3940  cun 3941   class class class wbr 5141  cfv 6537  (class class class)co 7405  cr 11111  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cz 12562  cuz 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827
This theorem is referenced by:  diophin  42093
  Copyright terms: Public domain W3C validator