Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzunuz Structured version   Visualization version   GIF version

Theorem lzunuz 40627
Description: The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
lzunuz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)

Proof of Theorem lzunuz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elun 4089 . . 3 (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)))
2 ellz1 40626 . . . . . 6 (𝐴 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
323ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
4 eluz1 12632 . . . . . 6 (𝐵 ∈ ℤ → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
543ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
63, 5orbi12d 917 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎))))
7 zre 12369 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
87adantl 483 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
9 simpl1 1191 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℤ)
109zred 12472 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℝ)
11 lelttric 11128 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑎𝐴𝐴 < 𝑎))
128, 10, 11syl2anc 585 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐴 < 𝑎))
13 simpll2 1213 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℤ)
1413zred 12472 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℝ)
15 simpll1 1212 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐴 ∈ ℤ)
1615peano2zd 12475 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℤ)
1716zred 12472 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℝ)
187ad2antlr 725 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝑎 ∈ ℝ)
19 simpll3 1214 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ≤ (𝐴 + 1))
20 zltp1le 12416 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
21203ad2antl1 1185 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
2221biimpa 478 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ≤ 𝑎)
2314, 17, 18, 19, 22letrd 11178 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵𝑎)
2423ex 414 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎𝐵𝑎))
2524orim2d 965 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → ((𝑎𝐴𝐴 < 𝑎) → (𝑎𝐴𝐵𝑎)))
2612, 25mpd 15 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐵𝑎))
2726ex 414 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ → (𝑎𝐴𝐵𝑎)))
2827pm4.71d 563 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎))))
29 andi 1006 . . . . 5 ((𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
3028, 29bitr2di 288 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)) ↔ 𝑎 ∈ ℤ))
316, 30bitrd 279 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
321, 31bitrid 283 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
3332eqrdv 2734 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  cdif 3889  cun 3890   class class class wbr 5081  cfv 6458  (class class class)co 7307  cr 10916  1c1 10918   + caddc 10920   < clt 11055  cle 11056  cz 12365  cuz 12628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629
This theorem is referenced by:  diophin  40631
  Copyright terms: Public domain W3C validator