Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzunuz Structured version   Visualization version   GIF version

Theorem lzunuz 42791
Description: The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
lzunuz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)

Proof of Theorem lzunuz
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elun 4128 . . 3 (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)))
2 ellz1 42790 . . . . . 6 (𝐴 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
323ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝐴)))
4 eluz1 12856 . . . . . 6 (𝐵 ∈ ℤ → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
543ad2ant2 1134 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ (ℤ𝐵) ↔ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
63, 5orbi12d 918 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎))))
7 zre 12592 . . . . . . . . . 10 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
87adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℝ)
9 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℤ)
109zred 12697 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ ℝ)
11 lelttric 11342 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑎𝐴𝐴 < 𝑎))
128, 10, 11syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐴 < 𝑎))
13 simpll2 1214 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℤ)
1413zred 12697 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ∈ ℝ)
15 simpll1 1213 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐴 ∈ ℤ)
1615peano2zd 12700 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℤ)
1716zred 12697 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ∈ ℝ)
187ad2antlr 727 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝑎 ∈ ℝ)
19 simpll3 1215 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵 ≤ (𝐴 + 1))
20 zltp1le 12642 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
21203ad2antl1 1186 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎 ↔ (𝐴 + 1) ≤ 𝑎))
2221biimpa 476 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → (𝐴 + 1) ≤ 𝑎)
2314, 17, 18, 19, 22letrd 11392 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) ∧ 𝐴 < 𝑎) → 𝐵𝑎)
2423ex 412 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝐴 < 𝑎𝐵𝑎))
2524orim2d 968 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → ((𝑎𝐴𝐴 < 𝑎) → (𝑎𝐴𝐵𝑎)))
2612, 25mpd 15 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) ∧ 𝑎 ∈ ℤ) → (𝑎𝐴𝐵𝑎))
2726ex 412 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ → (𝑎𝐴𝐵𝑎)))
2827pm4.71d 561 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎))))
29 andi 1009 . . . . 5 ((𝑎 ∈ ℤ ∧ (𝑎𝐴𝐵𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)))
3028, 29bitr2di 288 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (((𝑎 ∈ ℤ ∧ 𝑎𝐴) ∨ (𝑎 ∈ ℤ ∧ 𝐵𝑎)) ↔ 𝑎 ∈ ℤ))
316, 30bitrd 279 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝐴 + 1))) ∨ 𝑎 ∈ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
321, 31bitrid 283 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) ↔ 𝑎 ∈ ℤ))
3332eqrdv 2733 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  cdif 3923  cun 3924   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cz 12588  cuz 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853
This theorem is referenced by:  diophin  42795
  Copyright terms: Public domain W3C validator